tensorflow mnist c++训练
时间: 2023-09-17 21:15:04 浏览: 90
基于Qt(C++)和TensorFlow(Python)开发的,可以训练并预测Fashion Mnist数据集的程序+源代码
您好!针对您的问题,我可以通过以下步骤为您介绍如何使用 TensorFlow 训练 MNIST 数据集:
1. 导入必要的库
```
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
```
2. 加载 MNIST 数据集
```
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
```
3. 定义输入和输出占位符
```
x = tf.placeholder(tf.float32, [None, 784])
y = tf.placeholder(tf.float32, [None, 10])
```
4. 定义模型参数
```
W = tf.Variable(tf.zeros([784, 10]))
b = tf.Variable(tf.zeros([10]))
```
5. 定义模型
```
y_pred = tf.nn.softmax(tf.matmul(x, W) + b)
```
6. 定义损失函数
```
cross_entropy = tf.reduce_mean(-tf.reduce_sum(y * tf.log(y_pred), reduction_indices=[1]))
```
7. 定义优化器
```
train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy)
```
8. 定义评估模型的准确率
```
correct_prediction = tf.equal(tf.argmax(y_pred,1), tf.argmax(y,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
```
9. 训练模型
```
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
for i in range(1000):
batch_xs, batch_ys = mnist.train.next_batch(100)
sess.run(train_step, feed_dict={x: batch_xs, y: batch_ys})
if i % 100 == 0:
acc = sess.run(accuracy, feed_dict={x: mnist.test.images, y: mnist.test.labels})
print("Accuracy at step {}: {}".format(i, acc))
```
以上就是使用 TensorFlow 训练 MNIST 数据集的基本步骤。当然,您还可以通过调整超参数、使用更复杂的模型等方式提高准确率。希望对您有所帮助!
阅读全文