写一段python马氏性检验的代码
时间: 2023-05-11 18:03:45 浏览: 260
以下是一段 Python 马氏性检验的代码:
```python
import numpy as np
from scipy.stats import chi2
def mahalanobis_distance(x, mean, cov):
x_minus_mean = x - mean
inv_covmat = np.linalg.inv(cov)
left_term = np.dot(x_minus_mean, inv_covmat)
mahal = np.dot(left_term, x_minus_mean.T)
return mahal
def mahalanobis_test(data, alpha):
n = data.shape[0]
p = data.shape[1]
mean = np.mean(data, axis=0)
cov = np.cov(data.T)
distances = []
for i in range(n):
x = data[i]
mahal = mahalanobis_distance(x, mean, cov)
distances.append(mahal)
distances = np.array(distances)
threshold = chi2.ppf(1-alpha, p)
outliers = np.where(distances > threshold)[0]
return outliers
```
这段代码实现了马氏距离的计算和基于马氏距离的异常检测。给定一个数据集,我们首先计算数据集的均值和协方差矩阵,然后计算每个数据点与均值之间的马氏距离。最后,我们使用卡方分布来计算异常值的阈值,并将大于阈值的数据点标记为异常值。
阅读全文