生成一段基于FGSM攻击算法,输入32*32像素的图像,输出也为32*32像素图像的代码
时间: 2023-06-27 18:07:06 浏览: 143
以下是一个基于FGSM攻击算法的Python代码,用于输入32×32像素的图像并输出相同大小的图像:
```python
import torch
import torch.nn as nn
import torchvision
def fgsm_attack(image, epsilon, data_grad):
sign_data_grad = data_grad.sign()
perturbed_image = image + epsilon * sign_data_grad
perturbed_image = torch.clamp(perturbed_image, 0, 1)
return perturbed_image
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(3, 6, 5)
self.pool = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(6, 16, 5)
self.fc1 = nn.Linear(16 * 5 * 5, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)
def forward(self, x):
x = self.pool(nn.functional.relu(self.conv1(x)))
x = self.pool(nn.functional.relu(self.conv2(x)))
x = x.view(-1, 16 * 5 * 5)
x = nn.functional.relu(self.fc1(x))
x = nn.functional.relu(self.fc2(x))
x = self.fc3(x)
return x
net = Net()
criterion = nn.CrossEntropyLoss()
# Load the pre-trained model
PATH = './cifar_net.pth'
net.load_state_dict(torch.load(PATH))
# Load the test image
image = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=torchvision.transforms.ToTensor())
test_loader = torch.utils.data.DataLoader(image, batch_size=1, shuffle=True)
# Set the device to GPU if available
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Set the image to the first element of the test loader
data, target = next(iter(test_loader))
data = data.to(device)
target = target.to(device)
# Set the epsilon value for the FGSM attack
epsilon = 0.1
# Set the data gradient to zero
data_grad = torch.zeros(data.shape)
# Enable gradient calculation for the input data tensor
data.requires_grad = True
# Forward pass to obtain the predicted class
output = net(data)
loss = criterion(output, target)
# Backward pass to calculate the data gradient
loss.backward()
data_grad = data.grad.data
# Perturb the input image with the FGSM attack
perturbed_data = fgsm_attack(data, epsilon, data_grad)
# Forward pass with the perturbed image to obtain the predicted class
perturbed_output = net(perturbed_data)
perturbed_pred = perturbed_output.max(1, keepdim=True)[1]
# Print the original and perturbed images
print("Original Image")
torchvision.utils.save_image(data, 'original.png')
print("Perturbed Image")
torchvision.utils.save_image(perturbed_data, 'perturbed.png')
```
该代码使用了一个简单的卷积神经网络(CNN)来分类CIFAR-10图像,并使用FGSM攻击算法来修改输入图像。代码使用PyTorch框架编写,并在GPU上运行以提高性能。
阅读全文