void TopologicalSort(ALGraph G) { Stack S, OutCome; InitStack(&S); InitStack(&OutCome); //寻找入读为0的顶点入栈 for (int i = 0; i < G.VexNum; i++) { if (!G.InDegree[i]) { S.Vertics[S.tail++] = i; } } while (0 < S.tail) { int tmp = OutCome.Vertics[OutCome.tail++] = S.Vertics[--S.tail]; for (ArcNode* p = G.Vertics[tmp].FirstArc; NULL != p; p = p->Next) { G.InDegree[p->AdjVex]--; if (0 == G.InDegree[p->AdjVex]) S.Vertics[S.tail++] = p->AdjVex; } } if (OutCome.tail != G.VexNum) { printf("课程的先决条件有误!\n"); exit(EXIT_FAILURE); } printf("请输入分配课程要求(各学期负担集中:1 尽可能集中前几个学期:2):"); int Command; scanf("%d", &Command); switch (Command) { case 1: Method1(G, OutCome); break; case 2: Method2(G); break; default: { printf("命令错误!"); exit(EXIT_FAILURE); } } getch(); main(); }代码流程思路

时间: 2024-01-29 21:02:03 浏览: 93
该函数的主要功能是对给定的有向图G进行拓扑排序,并根据用户输入的要求进行课程分配。 具体流程如下: 1. 初始化两个栈S和OutCome,用于存储拓扑排序的结果和已经处理的顶点。 2. 遍历有向图G中的每个顶点,将入度为0的顶点入栈S中。 3. 当栈S不为空时,循环执行以下操作: - 取出栈S中的一个顶点tmp,将其加入栈OutCome中。 - 遍历顶点tmp的所有邻接点p->AdjVex,并将其入度减1。 - 如果邻接点p->AdjVex的入度为0,将其加入栈S中。 4. 如果栈OutCome的元素个数不等于有向图G的顶点数,说明有向图中存在环,拓扑排序失败,输出错误信息并退出程序。 5. 提示用户输入分配课程的要求(1代表各学期负担集中,2代表尽可能集中前几个学期)。 6. 根据用户输入的要求,调用相应的方法,进行课程分配。 7. 循环结束后,通过getch()等待用户按下任意键后重新进入main函数。
相关问题

试实现拓扑排序算法。函数void findindegree(algraph g,int indegree[])实现图中各个顶点入度的统计;函数int topologicalsort(algraph g , int topo[])获取拓扑序列。

题目要求实现拓扑排序算法。函数void findindegree(algraph g,int indegree[])实现统计图中各个顶点入度的功能,函数int topologicalsort(algraph g , int topo[])获取拓扑序列。

逐行翻译代码:typedef struct node { int adjvex; struct node *next; }node, *pointer; typedef struct node1 { int vex; int in; pointer link; }ALGraph; void createadlist(ALGraph G[], int n, int e) { int i, k, j; pointer q; for (i = 1; i <= n; i++) { G[i].vex = i; G[i].in=0; G[i].link = null; } for (k = 1; k <= e; k++) { scanf("%d%d", &i, &j); q = (pointer)malloc(sizeof(struct node)); q->adjvex = j; q->next = G[i].link; G[i].link = q; G[j].in++; } } void fun(ALGraph G[], int n, int v, int visit[]) { pointer p; int w; visit[v] = 1; printf("%3d", v); p = G[v].link; while (p != null) { w = p->adjvex; if (visit[w] == 0) { fun(G, n, w, visit); } p = p->next; } } int TopologicalSort(ALGraph G[],int &n) { SqStack S; InitSatack(S); for(int i=1;i<n;i++) { if(!G[i].in) Push(S,i); int count=0; while(!StackEmpty(S)) { Pop(S,i); printf(" %d ",i); ++count; pointer p; p=(pointer)malloc(sizeof(struct node)); for(p=G[i].link;p;p=p->next) { int k=p->adjvex; if(!(--G[k].in)) Push(S,k); } } if(count<G[i].in) printf("存在循环"); } return ok; }

这段代码是一个图的邻接表存储结构的实现。下面是逐行的代码翻译: ``` typedef struct node { int adjvex; struct node *next; }node, *pointer; typedef struct node1 { int vex; int in; pointer link; }ALGraph; ``` 定义了两个结构体,一个是邻接表中的节点,一个是邻接表中的图。 ``` void createadlist(ALGraph G[], int n, int e) { int i, k, j; pointer q; for (i = 1; i <= n; i++) { G[i].vex = i; G[i].in=0; G[i].link = null; } for (k = 1; k <= e; k++) { scanf("%d%d", &i, &j); q = (pointer)malloc(sizeof(struct node)); q->adjvex = j; q->next = G[i].link; G[i].link = q; G[j].in++; } } ``` 这个函数用于创建邻接表。首先对于每个节点,分别给它们赋值。然后遍历每一条边,读取起点和终点,为终点节点的入度加1,同时将起点节点作为终点节点的邻接表的头节点。 ``` void fun(ALGraph G[], int n, int v, int visit[]) { pointer p; int w; visit[v] = 1; printf("%3d", v); p = G[v].link; while (p != null) { w = p->adjvex; if (visit[w] == 0) { fun(G, n, w, visit); } p = p->next; } } ``` 这个函数是深度优先遍历的实现。从给定的起点开始,访问该节点,并标记为已访问。然后遍历该节点的邻接表,如果邻接节点未被访问,则递归地访问该节点。 ``` int TopologicalSort(ALGraph G[],int &n) { SqStack S; InitSatack(S); for(int i=1;i<n;i++) { if(!G[i].in) Push(S,i); int count=0; while(!StackEmpty(S)) { Pop(S,i); printf(" %d ",i); ++count; pointer p; p=(pointer)malloc(sizeof(struct node)); for(p=G[i].link;p;p=p->next) { int k=p->adjvex; if(!(--G[k].in)) Push(S,k); } } if(count<G[i].in) printf("存在循环"); } return ok; } ``` 这个函数是拓扑排序的实现。首先建立一个栈,将所有入度为0的节点入栈。然后弹出栈顶元素,输出该节点,并将该节点指向的邻接节点的入度减1。如果邻接节点入度为0,则入栈。当栈为空时,如果输出的节点数小于节点总数,则说明存在环。最后返回ok表示排序完成。
阅读全文

相关推荐

Base path: /home/dama/demo02_ws Source space: /home/dama/demo02_ws/src Build space: /home/dama/demo02_ws/build Devel space: /home/dama/demo02_ws/devel Install space: /home/dama/demo02_ws/install #### #### Running command: "make cmake_check_build_system" in "/home/dama/demo02_ws/build" #### -- Using CATKIN_DEVEL_PREFIX: /home/dama/demo02_ws/devel -- Using CMAKE_PREFIX_PATH: /home/dama/demo02_ws/devel;/home/dama/demo01_ws/devel;/opt/ros/noetic -- This workspace overlays: /home/dama/demo02_ws/devel;/home/dama/demo01_ws/devel;/opt/ros/noetic -- Found PythonInterp: /usr/bin/python3 (found suitable version "3.8.10", minimum required is "3") -- Using PYTHON_EXECUTABLE: /usr/bin/python3 -- Using Debian Python package layout -- Using empy: /usr/lib/python3/dist-packages/em.py -- Using CATKIN_ENABLE_TESTING: ON -- Call enable_testing() -- Using CATKIN_TEST_RESULTS_DIR: /home/dama/demo02_ws/build/test_results -- Forcing gtest/gmock from source, though one was otherwise available. -- Found gtest sources under '/usr/src/googletest': gtests will be built -- Found gmock sources under '/usr/src/googletest': gmock will be built -- Found PythonInterp: /usr/bin/python3 (found version "3.8.10") -- Using Python nosetests: /usr/bin/nosetests3 -- catkin 0.8.10 -- BUILD_SHARED_LIBS is on -- BUILD_SHARED_LIBS is on -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -- ~~ traversing 1 packages in topological order: -- ~~ - hello_vscode -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -- +++ processing catkin package: 'hello_vscode' -- ==> add_subdirectory(hello_vscode) CMake Error at /opt/ros/noetic/share/catkin/cmake/catkin_install_python.cmake:86 (message): catkin_install_python() called with non-existing file '/home/dama/demo02_ws/src/hello_vscode/scripts/hello_vscode_p.py'. Call Stack (most recent call first): hello_vscode/CMakeLists.txt:162 (catkin_install_python) -- Configuring incomplete, errors occurred! See also "/home/dama/demo02_ws/build/CMakeFiles/CMakeOutput.log". See also "/home/dama/demo02_ws/build/CMakeFiles/CMakeError.log". make: *** [Makefile:544:cmake_check_build_system] 错误 1 Invoking "make cmake_check_build_system" failed

最新推荐

recommend-type

ISO10303-42-2003.pdf

itled "Industrial automation systems and integration - Product data representation and exchange - Part 42: Integrated generic resource: Geometric and topological representation",该标准的主要内容是...
recommend-type

Fluent电弧,激光,熔滴一体模拟 UDF包括高斯旋转体热源、双椭球热源(未使用)、VOF梯度计算、反冲压力、磁场力、表面张力,以及熔滴过渡所需的熔滴速度场、熔滴温度场和熔滴VOF

Fluent电弧,激光,熔滴一体模拟。 UDF包括高斯旋转体热源、双椭球热源(未使用)、VOF梯度计算、反冲压力、磁场力、表面张力,以及熔滴过渡所需的熔滴速度场、熔滴温度场和熔滴VOF。
recommend-type

Python调试器vardbg:动画可视化算法流程

资源摘要信息:"vardbg是一个专为Python设计的简单调试器和事件探查器,它通过生成程序流程的动画可视化效果,增强了算法学习的直观性和互动性。该工具适用于Python 3.6及以上版本,并且由于使用了f-string特性,它要求用户的Python环境必须是3.6或更高。 vardbg是在2019年Google Code-in竞赛期间为CCExtractor项目开发而创建的,它能够跟踪每个变量及其内容的历史记录,并且还能跟踪容器内的元素(如列表、集合和字典等),以便用户能够深入了解程序的状态变化。" 知识点详细说明: 1. Python调试器(Debugger):调试器是开发过程中用于查找和修复代码错误的工具。 vardbg作为一个Python调试器,它为开发者提供了跟踪代码执行、检查变量状态和控制程序流程的能力。通过运行时监控程序,调试器可以发现程序运行时出现的逻辑错误、语法错误和运行时错误等。 2. 事件探查器(Event Profiler):事件探查器是对程序中的特定事件或操作进行记录和分析的工具。 vardbg作为一个事件探查器,可以监控程序中的关键事件,例如变量值的变化和函数调用等,从而帮助开发者理解和优化代码执行路径。 3. 动画可视化效果:vardbg通过生成程序流程的动画可视化图像,使得算法的执行过程变得生动和直观。这对于学习算法的初学者来说尤其有用,因为可视化手段可以提高他们对算法逻辑的理解,并帮助他们更快地掌握复杂的概念。 4. Python版本兼容性:由于vardbg使用了Python的f-string功能,因此它仅兼容Python 3.6及以上版本。f-string是一种格式化字符串的快捷语法,提供了更清晰和简洁的字符串表达方式。开发者在使用vardbg之前,必须确保他们的Python环境满足版本要求。 5. 项目背景和应用:vardbg是在2019年的Google Code-in竞赛中为CCExtractor项目开发的。Google Code-in是一项面向13到17岁的学生开放的竞赛活动,旨在鼓励他们参与开源项目。CCExtractor是一个用于从DVD、Blu-Ray和视频文件中提取字幕信息的软件。vardbg的开发过程中,该项目不仅为学生提供了一个实际开发经验的机会,也展示了学生对开源软件贡献的可能性。 6. 特定功能介绍: - 跟踪变量历史记录:vardbg能够追踪每个变量在程序执行过程中的历史记录,使得开发者可以查看变量值的任何历史状态,帮助诊断问题所在。 - 容器元素跟踪:vardbg支持跟踪容器类型对象内部元素的变化,包括列表、集合和字典等数据结构。这有助于开发者理解数据结构在算法执行过程中的具体变化情况。 通过上述知识点的详细介绍,可以了解到vardbg作为一个针对Python的调试和探查工具,在提供程序流程动画可视化效果的同时,还通过跟踪变量和容器元素等功能,为Python学习者和开发者提供了强大的支持。它不仅提高了学习算法的效率,也为处理和优化代码提供了强大的辅助功能。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【IT设备维保管理入门指南】:如何制定有效的维护计划,提升设备性能与寿命

![【IT设备维保管理入门指南】:如何制定有效的维护计划,提升设备性能与寿命](https://docs.plesk.com/en-US/onyx/administrator-guide/images/78798.webp) # 摘要 本文全面探讨了IT设备维保管理的各个方面,从理论基础到实践案例,再到技术革新和未来展望。首先概述了维保计划的重要性,强调了其在延长设备生命周期和提升性能稳定性方面的作用。接着,文中详细论述了维保计划的制定原则,包括预防性维护、设备分类及成本效益分析等。通过分析不同行业的实践案例,本文揭示了成功维保计划的关键因素,并提出了效果评估与改进的策略。随后,探讨了性能监
recommend-type

python爬取网页链接,url = “https://koubei.16888.com/57233/0-0-0-0”

在Python中,使用如`requests`库来发送HTTP请求并抓取网页链接是比较常见的做法。以下是如何使用`requests`和BeautifulSoup库(用于解析HTML)来爬取给定URL上的信息: 首先,确保已安装`requests`和`beautifulsoup4`库,如果未安装可以使用以下命令安装: ```bash pip install requests beautifulsoup4 ``` 然后,你可以编写以下Python脚本来爬取指定URL的内容: ```python import requests from bs4 import BeautifulSoup # 定义要
recommend-type

掌握Web开发:Udacity天气日记项目解析

资源摘要信息: "Udacity-Weather-Journal:Web开发路线的Udacity纳米度-项目2" 知识点: 1. Udacity:Udacity是一个提供在线课程和纳米学位项目的教育平台,涉及IT、数据科学、人工智能、机器学习等众多领域。纳米学位是Udacity提供的一种专业课程认证,通过一系列课程的学习和实践项目,帮助学习者掌握专业技能,并提供就业支持。 2. Web开发路线:Web开发是构建网页和网站的应用程序的过程。学习Web开发通常包括前端开发(涉及HTML、CSS、JavaScript等技术)和后端开发(可能涉及各种服务器端语言和数据库技术)的学习。Web开发路线指的是在学习过程中所遵循的路径和进度安排。 3. 纳米度项目2:在Udacity提供的学习路径中,纳米学位项目通常是实践导向的任务,让学生能够在真实世界的情境中应用所学的知识。这些项目往往需要学生完成一系列具体任务,如开发一个网站、创建一个应用程序等,以此来展示他们所掌握的技能和知识。 4. Udacity-Weather-Journal项目:这个项目听起来是关于创建一个天气日记的Web应用程序。在完成这个项目时,学习者可能需要运用他们关于Web开发的知识,包括前端设计(使用HTML、CSS、Bootstrap等框架设计用户界面),使用JavaScript进行用户交互处理,以及可能的后端开发(如果需要保存用户数据,可能会使用数据库技术如SQLite、MySQL或MongoDB)。 5. 压缩包子文件:这里提到的“压缩包子文件”可能是一个笔误或误解,它可能实际上是指“压缩包文件”(Zip archive)。在文件名称列表中的“Udacity-Weather-journal-master”可能意味着该项目的所有相关文件都被压缩在一个名为“Udacity-Weather-journal-master.zip”的压缩文件中,这通常用于将项目文件归档和传输。 6. 文件名称列表:文件名称列表提供了项目文件的结构概览,它可能包含HTML、CSS、JavaScript文件以及可能的服务器端文件(如Python、Node.js文件等),此外还可能包括项目依赖文件(如package.json、requirements.txt等),以及项目文档和说明。 7. 实际项目开发流程:在开发像Udacity-Weather-Journal这样的项目时,学习者可能需要经历需求分析、设计、编码、测试和部署等阶段。在每个阶段,他们需要应用他们所学的理论知识,并解决在项目开发过程中遇到的实际问题。 8. 技术栈:虽然具体的技术栈未在标题和描述中明确提及,但一个典型的Web开发项目可能涉及的技术包括但不限于HTML5、CSS3、JavaScript(可能使用框架如React.js、Angular.js或Vue.js)、Bootstrap、Node.js、Express.js、数据库技术(如上所述),以及版本控制系统如Git。 9. 学习成果展示:完成这样的项目后,学习者将拥有一个可部署的Web应用程序,以及一个展示他们技术能力的项目案例,这些对于未来的求职和职业发展都是有价值的。 10. 知识点整合:在进行Udacity-Weather-Journal项目时,学习者需要将所学的多个知识点融合在一起,包括前端设计、用户体验、后端逻辑处理、数据存储和检索、以及可能的API调用等。 总结来说,Udacity-Weather-Journal项目是Udacity Web开发纳米学位课程中的一个重要实践环节,它要求学习者运用他们所学到的前端和后端开发技能,完成一个具体的Web应用程序项目。通过完成这样的项目,学习者能够将理论知识转化为实践经验,并为他们未来在IT行业的职业发展打下坚实的基础。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【文献整理高效法】:ENDNOTE软件实用功能及快捷操作揭秘

![【文献整理高效法】:ENDNOTE软件实用功能及快捷操作揭秘](https://europe1.discourse-cdn.com/endnote/optimized/2X/a/a18b63333c637eb5d6fafb609a4eff7bd46df6b0_2_1024x391.jpeg) # 摘要 本文综合探讨了ENDNOTE在文献整理和管理中的作用及其高效操作技巧。首先介绍了文献整理的重要性和ENDNOTE软件的简介,随后深入解析了ENDNOTE的基本功能,包括文献信息的导入与管理、引用和参考文献的生成,以及文献搜索与数据库集成。接着,本文详细阐述了ENDNOTE的高效操作技巧,涵
recommend-type

在使用SQL创建存储过程时,是否可以在定义输入参数时直接为其赋予初始值?

在使用SQL创建存储过程时,通常可以在定义输入参数时为其赋予初始值。这种做法可以使参数具有默认值,当调用存储过程时,如果没有提供该参数的值,则会使用默认值。以下是一个示例: ```sql CREATE PROCEDURE MyProcedure @Param1 INT = 10, @Param2 NVARCHAR(50) = 'DefaultValue' AS BEGIN -- 存储过程的主体 SELECT @Param1 AS Param1, @Param2 AS Param2 END ``` 在这个示例中,`@Param1`和`@Param2`是输入参数