解释pool2d = nn.MaxPool2d((2, 3), stride=(2, 3), padding=(0, 1))
时间: 2023-10-13 14:07:16 浏览: 77
这行代码定义了一个二维的最大池化层(Max Pooling Layer),其输入为一个二维的张量(即一个二维的特征图),池化核大小为 $(2,3)$,即将输入的特征图以 $2 \times 3$ 的区域为窗口进行扫描,并取窗口内的最大值作为输出特征图的一个像素值。此外,该最大池化层的步长(stride)也为 $(2,3)$,表示窗口在扫描时的水平和垂直方向上的步长均为 2 和 3。最后,该层的填充(padding)为 $(0,1)$,表示在输入特征图的水平方向上不进行填充,在垂直方向上进行 1 个像素的填充。
相关问题
def __init__(self): super(CNN, self).__init__() self.conv1 = nn.Conv2d(3, 16, kernel_size=3, stride=1, padding=1) self.bn1 = nn.BatchNorm2d(16) self.relu1 = nn.ReLU() self.pool1 = nn.MaxPool2d(kernel_size=2, stride=2) self.conv2 = nn.Conv2d(16, 32, kernel_size=3, stride=1, padding=1) self.bn2 = nn.BatchNorm2d(32) self.relu2 = nn.ReLU() self.pool2 = nn.MaxPool2d(kernel_size=2, stride=2) self.fc1 = nn.Linear(32 * 8 * 8, 128) self.relu3 = nn.ReLU() self.fc2 = nn.Linear(128, 2)讲一下这段代码
这段代码是一个卷积神经网络(CNN)的初始化函数,它定义了神经网络的结构。首先定义了一个卷积层(conv1),输入通道数为3,输出通道数为16,卷积核大小为3x3,步长为1,padding为1。接着定义了一个批归一化层(bn1),用于规范化卷积层的输出。然后是一个ReLU激活函数(relu1),用于增加网络的非线性性。紧接着是一个最大池化层(pool1),用于缩小特征图的尺寸。接下来是另一个卷积层(conv2),输入通道数为16,输出通道数为32,卷积核大小为3x3,步长为1,padding为1。再次定义了一个批归一化层(bn2),一个ReLU激活函数(relu2),和一个最大池化层(pool2)。最后是两个全连接层(fc1和fc2),分别将特征图转换为一维向量,并输出最终的分类结果。其中,fc1的输入大小为32x8x8,输出大小为128,fc2的输入大小为128,输出大小为2。
描述这段代码 class VGGTest(nn.Module): def __init__(self, pretrained=True, numClasses=10): super(VGGTest, self).__init__() # conv1 1/2 self.conv1_1 = nn.Conv2d(3, 64, kernel_size=3, padding=1) self.relu1_1 = nn.ReLU(inplace=True) self.conv1_2 = nn.Conv2d(64, 64, kernel_size=3, padding=1) self.relu1_2 = nn.ReLU(inplace=True) self.pool1 = nn.MaxPool2d(kernel_size=2, stride=2) # conv2 1/4 self.conv2_1 = nn.Conv2d(64, 128, kernel_size=3, padding=1) self.relu2_1 = nn.ReLU(inplace=True) self.conv2_2 = nn.Conv2d(128, 128, kernel_size=3, padding=1) self.relu2_2 = nn.ReLU(inplace=True) self.pool2 = nn.MaxPool2d(kernel_size=2, stride=2) # conv3 1/8 self.conv3_1 = nn.Conv2d(128, 256, kernel_size=3, padding=1) self.relu3_1 = nn.ReLU(inplace=True) self.conv3_2 = nn.Conv2d(256, 256, kernel_size=3, padding=1) self.relu3_2 = nn.ReLU(inplace=True) self.conv3_3 = nn.Conv2d(256, 256, kernel_size=3, padding=1) self.relu3_3 = nn.ReLU(inplace=True) self.pool3 = nn.MaxPool2d(kernel_size=2, stride=2) # conv4 1/16 self.conv4_1 = nn.Conv2d(256, 512, kernel_size=3, padding=1) self.relu4_1 = nn.ReLU(inplace=True) self.conv4_2 = nn.Conv2d(512, 512, kernel_size=3, padding=1) self.relu4_2 = nn.ReLU(inplace=True) self.conv4_3 = nn.Conv2d(512, 512, kernel_size=3, padding=1) self.relu4_3 = nn.ReLU(inplace=True) self.pool4 = nn.MaxPool2d(kernel_size=2, stride=2) # conv5 1/32 self.conv5_1 = nn.Conv2d(512, 512, kernel_size=3, padding=1) self.relu5_1 = nn.ReLU(inplace=True) self.conv5_2 = nn.Conv2d(512, 512, kernel_size=3, padding=1) self.relu5_2 = nn.ReLU(inplace=True) self.conv5_3 = nn.Conv2d(512, 512, kernel_size=3, padding=1) self.relu5_3 = nn.ReLU(inplace=True) self.pool5 = nn.MaxPool2d(kernel_size=2, stride=2)
这段代码定义了一个名为VGGTest的神经网络模型,该模型使用了VGG网络的结构。它包含了5个卷积层和5个最大池化层,每个卷积层后面都跟着一个ReLU激活函数。其中第一个卷积层输入通道数为3,输出通道数为64,卷积核大小为3x3,padding为1,表示输入和输出的大小相同。接下来每个卷积层的输入通道数都为上一层的输出通道数,输出通道数依次是64,128,256,512,512。 每个最大池化层的kernel_size为2,stride为2,表示将输入图像的大小缩小一半。
阅读全文