对一组非图像的拓扑图(bin文件,格式为coo)进行训练,图一共有60000左右(即60000多个bin文件),使用VGAE,代码示例
时间: 2024-03-01 16:51:29 浏览: 111
首先,需要先导入所需的Python库和模块:
```python
import os
import torch
import numpy as np
from torch.utils.data import Dataset, DataLoader
from torch_geometric.nn import VGAE
from torch_geometric.data import Data
from torch_geometric.utils import from_scipy_sparse_matrix
import scipy.sparse as sp
```
然后,定义一个自定义数据集类:
```python
class MyDataset(Dataset):
def __init__(self, root_dir):
self.root_dir = root_dir
self.files = os.listdir(root_dir)
def __len__(self):
return len(self.files)
def __getitem__(self, idx):
file_path = os.path.join(self.root_dir, self.files[idx])
coo_matrix = sp.load_npz(file_path)
edge_index, edge_attr = from_scipy_sparse_matrix(coo_matrix)
x = torch.ones(edge_index.max() + 1)
return Data(x=x, edge_index=edge_index, edge_attr=edge_attr)
```
接着,定义训练函数:
```python
def train(model, optimizer, train_loader, device):
model.train()
loss_all = 0
for data in train_loader:
data = data.to(device)
optimizer.zero_grad()
z = model.encode(data.x, data.edge_index)
loss = model.recon_loss(z, data.edge_index, data.edge_attr)
loss.backward()
loss_all += loss.item() * data.num_graphs
optimizer.step()
return loss_all / len(train_loader.dataset)
```
最后,可以开始训练模型:
```python
dataset = MyDataset(root_dir='./bin_files')
train_loader = DataLoader(dataset, batch_size=64, shuffle=True)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = VGAE(dataset[0].num_nodes, 16, 8).to(device)
optimizer = torch.optim.Adam(model.parameters(), lr=0.01)
for epoch in range(200):
loss = train(model, optimizer, train_loader, device)
print('Epoch: {:03d}, Loss: {:.4f}'.format(epoch, loss))
```
这里的VGAE使用16维的节点嵌入和8维的边嵌入,训练200个epoch,可以根据实际情况进行调整。
阅读全文