matlab实现sift特征提取
时间: 2023-10-16 19:24:03 浏览: 217
SIFT特征提取是一种图像处理技术,可以用于图像的特征匹配和目标识别。下面是MATLAB实现SIFT特征提取的基本步骤:
1. 读入图像
```
img = imread('image.jpg');
```
2. 将图像转换为灰度图像
```
img_gray = rgb2gray(img);
```
3. 计算高斯金字塔
```
sigma = 1.6;
k = sqrt(2);
octaves = 4;
scales = 5;
% 计算每个级别的高斯卷积核的标准差
for i = 1:octaves
for j = 1:scales
sigma_scale = sigma * k ^ (j - 1);
h = fspecial('gaussian', [round(6*sigma_scale), round(6*sigma_scale)], sigma_scale);
kernel{i, j} = h;
end
sigma = sigma * 2;
end
% 生成高斯金字塔
for i = 1:octaves
for j = 1:scales
if i == 1 && j == 1
gaussian_pyramid{i, j} = img_gray;
elseif j == 1
gaussian_pyramid{i, j} = imresize(gaussian_pyramid{i-1, scales}, 0.5);
else
gaussian_pyramid{i, j} = imfilter(gaussian_pyramid{i, j-1}, kernel{i, j}, 'replicate');
end
end
end
```
4. 计算DoG金字塔
```
for i = 1:octaves
for j = 1:scales-1
dog_pyramid{i, j} = gaussian_pyramid{i, j+1} - gaussian_pyramid{i, j};
end
end
```
5. 检测关键点
```
threshold = 0.02;
for i = 1:octaves
for j = 2:scales-2
for m = 2:size(dog_pyramid{i, j}, 1)-1
for n = 2:size(dog_pyramid{i, j}, 2)-1
% 判断当前点是不是极值点
if dog_pyramid{i, j}(m, n) > max(max(dog_pyramid{i, j-1}(m-1:m+1, n-1:n+1), ...
dog_pyramid{i, j}(m-1:m+1, n-1:n+1)), dog_pyramid{i, j+1}(m-1:m+1, n-1:n+1)) ...
|| dog_pyramid{i, j}(m, n) < min(min(dog_pyramid{i, j-1}(m-1:m+1, n-1:n+1), ...
dog_pyramid{i, j}(m-1:m+1, n-1:n+1)), dog_pyramid{i, j+1}(m-1:m+1, n-1:n+1))
% 计算关键点的尺度和方向
sigma_scale = sigma * k ^ (j - 1);
[Ix, Iy] = gradient(gaussian_pyramid{i, j});
magnitude = sqrt(Ix(m, n) ^ 2 + Iy(m, n) ^ 2);
orientation = atan2d(Iy(m, n), Ix(m, n));
% 将关键点信息保存到数组中
if magnitude > threshold
key_points(end+1, :) = [n, m, sigma_scale, orientation];
end
end
end
end
end
end
```
6. 计算关键点的SIFT描述子
```
descriptor_size = 4;
descriptor_bins = 8;
for i = 1:size(key_points, 1)
% 计算每个关键点周围的16x16的区域
x = round(key_points(i, 1));
y = round(key_points(i, 2));
scale = key_points(i, 3);
orientation = key_points(i, 4);
[Ix, Iy] = gradient(imresize(gaussian_pyramid{octaves, 1}, scale));
Ix = imresize(Ix(y-7:y+8, x-7:x+8), [descriptor_size, descriptor_size]);
Iy = imresize(Iy(y-7:y+8, x-7:x+8), [descriptor_size, descriptor_size]);
magnitude = sqrt(Ix .^ 2 + Iy .^ 2);
orientation = orientation + atan2d(Iy, Ix);
% 将方向范围限定在[0, 360]
orientation(orientation < 0) = orientation(orientation < 0) + 360;
orientation(orientation >= 360) = orientation(orientation >= 360) - 360;
% 将区域分为4x4个子区域
descriptor = zeros(1, descriptor_bins * descriptor_size ^ 2);
for m = 1:descriptor_size
for n = 1:descriptor_size
sub_magnitude = magnitude((m-1)*4+1:m*4, (n-1)*4+1:n*4);
sub_orientation = orientation((m-1)*4+1:m*4, (n-1)*4+1:n*4);
% 将每个子区域分为8个方向
for p = 0:descriptor_bins-1
idx = sub_orientation >= p * 45 & sub_orientation < (p+1) * 45;
descriptor(1, (m-1)*descriptor_size*descriptor_bins+(n-1)*descriptor_bins+p+1) = sum(sum(sub_magnitude(idx))));
end
end
end
% 将描述子归一化
descriptor = descriptor / norm(descriptor);
% 将关键点和描述子保存到数组中
sift_features(i).x = key_points(i, 1);
sift_features(i).y = key_points(i, 2);
sift_features(i).scale = key_points(i, 3);
sift_features(i).orientation = key_points(i, 4);
sift_features(i).descriptor = descriptor;
end
```
这样就实现了SIFT特征提取的基本步骤。需要注意的是,SIFT特征提取是一个比较复杂的算法,以上代码只是一个简单的实现,可能会存在一些不足之处。
阅读全文