x = [nn.functional.avg_pool2d(nn.functional.relu(conv(x)), (x.shape[2], 1)).squeeze(3) for conv in self.convs]报错x = [nn.functional.avg_pool2d(nn.functional.relu(conv(x)), (x.shape[2], 1)).squeeze(3) for conv in self.convs]怎么改
时间: 2024-02-12 21:02:26 浏览: 118
这个错误可能是由于 `x` 的形状不正确导致的。根据你提供的代码,我猜测错误可能是在 `x.shape[2]` 这个位置,因为 `avg_pool2d` 函数需要指定池化的大小,而这里使用的大小是 `(x.shape[2], 1)`,也就是将输入张量 `x` 在第三维上进行池化,但是 `x` 的形状可能不满足要求。
你可以尝试修改代码,将 `x.shape[2]` 替换为一个具体的数值,例如 `pool_size`,然后再定义一个变量 `pool_size` 来指定池化的大小。具体代码如下:
```
pool_size = x.size(2)
x = [nn.functional.avg_pool2d(nn.functional.relu(conv(x)), (pool_size, 1)).squeeze(3) for conv in self.convs]
```
这个代码中,我们使用 `size()` 方法获取 `x` 张量在第三维上的大小,然后将其赋值给变量 `pool_size`,最后使用 `pool_size` 变量来指定池化的大小。
如果这个错误仍然存在,你可以检查 `x` 张量的形状,确保其为 `(batch_size, channel, height, width)` 的形式,并且第三维的大小大于 1。
相关问题
使用paddle将以下LeNet代码改为ResNet网络模型class LeNet(paddle.nn.Layer): def __init__(self): super(LeNet, self).__init__() # 创建卷积和池化层块,每个卷积层使用relu激活函数,后面跟着一个2x2的池化 self.conv1 = paddle.nn.Conv2D(3, 32, 3, 1, 1) self.relu1 = paddle.nn.ReLU() self.max_pool1 = paddle.nn.MaxPool2D(2, 2) self.conv2 = paddle.nn.Conv2D(32, 64, 3, 1, 1) self.relu2 = paddle.nn.ReLU() self.max_pool2 = paddle.nn.MaxPool2D(2, 2) self.avg_pool = AdaptiveAvgPool2D(1) self.linear= paddle.nn.Linear(64, 2) # 网络的前向计算过程 def forward(self, x): x = self.max_pool1(self.relu1(self.conv1(x))) x = self.max_pool2(self.relu2(self.conv2(x))) x = self.avg_pool(x) x = paddle.reshape(x, [x.shape[0],-1]) x = self.linear(x) return x paddle.Model(LeNet()).summary((-1,3,256,256))
以下是将LeNet代码改为ResNet网络模型的代码:
```
import paddle.nn.functional as F
class ResNet(paddle.nn.Layer):
def __init__(self, num_classes=2):
super(ResNet, self).__init__()
# 第一个卷积层,输出通道数为64,卷积核大小为7x7,步长为2,padding为3
self.conv1 = paddle.nn.Conv2D(3, 64, kernel_size=7, stride=2, padding=3, bias_attr=False)
self.bn1 = paddle.nn.BatchNorm2D(64)
self.relu = paddle.nn.ReLU()
self.max_pool = paddle.nn.MaxPool2D(kernel_size=3, stride=2, padding=1)
# ResNet的主体部分,包括4个残差块
self.layer1 = self._make_layer(64, 3)
self.layer2 = self._make_layer(128, 4, stride=2)
self.layer3 = self._make_layer(256, 6, stride=2)
self.layer4 = self._make_layer(512, 3, stride=2)
# 全局平均池化层
self.avg_pool = paddle.nn.AdaptiveAvgPool2D((1, 1))
# 分类器
self.fc = paddle.nn.Linear(512, num_classes)
def _make_layer(self, channels, blocks, stride=1):
layers = []
# 下采样,对输入进行降维
downsample = None
if stride != 1 or self.in_channels != channels:
downsample = paddle.nn.Sequential(
paddle.nn.Conv2D(self.in_channels, channels, kernel_size=1, stride=stride, bias_attr=False),
paddle.nn.BatchNorm2D(channels)
)
layers.append(ResidualBlock(self.in_channels, channels, stride, downsample))
self.in_channels = channels
for _ in range(1, blocks):
layers.append(ResidualBlock(channels, channels))
return paddle.nn.Sequential(*layers)
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.max_pool(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = self.avg_pool(x)
x = paddle.flatten(x, 1)
x = self.fc(x)
return x
class ResidualBlock(paddle.nn.Layer):
def __init__(self, in_channels, out_channels, stride=1, downsample=None):
super(ResidualBlock, self).__init__()
self.conv1 = paddle.nn.Conv2D(in_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias_attr=False)
self.bn1 = paddle.nn.BatchNorm2D(out_channels)
self.relu = paddle.nn.ReLU()
self.conv2 = paddle.nn.Conv2D(out_channels, out_channels, kernel_size=3, stride=1, padding=1, bias_attr=False)
self.bn2 = paddle.nn.BatchNorm2D(out_channels)
self.downsample = downsample
def forward(self, x):
identity = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
if self.downsample is not None:
identity = self.downsample(x)
out += identity
out = self.relu(out)
return out
paddle.Model(ResNet()).summary((-1,3,256,256))
```
这里我们定义了一个ResNet网络模型,包括一个卷积层,一个最大池化层,4个残差块,一个全局平均池化层和一个分类器。其中,每个残差块包含两个卷积层和一个跳跃连接,卷积层的输出通道数和步长根据网络深度不同而不同。在模型前向传播过程中,我们先使用一次卷积和池化操作,然后将特征图输入到各个残差块中,最后进行全局平均池化和分类。
要求不借助resnest.torch复现哦
好的,那么我将使用PyTorch自己实现resnest50模型,并将通道数改为1。
resnest50模型是由4个stage组成,每个stage包含多个基本块(basic block)。我们可以根据论文中的描述和代码来实现这个模型。
```python
import torch.nn as nn
import torch
class ResNeStBottleneck(nn.Module):
def __init__(self, in_channels, out_channels, stride, cardinality, base_width, dilation=1):
super(ResNeStBottleneck, self).__init__()
width_ratio = out_channels / (cardinality * base_width)
D = int(out_channels * (dilation / 64))
self.conv1 = nn.Conv2d(in_channels, base_width * cardinality, kernel_size=1, stride=1, padding=0, bias=False)
self.bn1 = nn.BatchNorm2d(base_width * cardinality)
self.conv2 = nn.Conv2d(base_width * cardinality, base_width * cardinality, kernel_size=3, stride=stride, padding=dilation, dilation=dilation, groups=cardinality, bias=False)
self.bn2 = nn.BatchNorm2d(base_width * cardinality)
self.conv3 = nn.Conv2d(base_width * cardinality, D, kernel_size=1, stride=1, padding=0, bias=False)
self.bn3 = nn.BatchNorm2d(D)
self.relu = nn.ReLU(inplace=True)
self.stride = stride
self.width_ratio = width_ratio
self.cardinality = cardinality
self.base_width = base_width
self.D = D
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out)
out = self.conv3(out)
out = self.bn3(out)
if residual.shape[1] != out.shape[1]:
residual = torch.nn.functional.avg_pool2d(residual, kernel_size=1, stride=self.stride)
residual = torch.cat((residual, torch.zeros_like(residual)), dim=1)
out = out + residual
out = self.relu(out)
return out
class ResNeStStage(nn.Module):
def __init__(self, in_channels, out_channels, stride, num_blocks, cardinality, base_width, dilation=1):
super(ResNeStStage, self).__init__()
self.blocks = nn.ModuleList()
for i in range(num_blocks):
self.blocks.append(ResNeStBottleneck(in_channels, out_channels, stride if i == 0 else 1, cardinality, base_width, dilation))
def forward(self, x):
for block in self.blocks:
x = block(x)
return x
class ResNeSt50(nn.Module):
def __init__(self, num_classes=1000):
super(ResNeSt50, self).__init__()
self.conv1 = nn.Conv2d(1, 64, kernel_size=7, stride=2, padding=3, bias=False)
self.bn1 = nn.BatchNorm2d(64)
self.relu = nn.ReLU(inplace=True)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.stage1 = ResNeStStage(64, 256, stride=1, num_blocks=3, cardinality=1, base_width=64)
self.stage2 = ResNeStStage(256, 512, stride=2, num_blocks=4, cardinality=32, base_width=4)
self.stage3 = ResNeStStage(512, 1024, stride=2, num_blocks=6, cardinality=32, base_width=4)
self.stage4 = ResNeStStage(1024, 2048, stride=2, num_blocks=3, cardinality=32, base_width=4)
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
self.fc = nn.Linear(2048, num_classes)
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x)
x = self.stage1(x)
x = self.stage2(x)
x = self.stage3(x)
x = self.stage4(x)
x = self.avgpool(x)
x = x.view(x.size(0), -1)
x = self.fc(x)
return x
```
在这里,我们定义了ResNeStBottleneck类,它实现了resnest50中的基本块。我们还定义了ResNeStStage类,它实现了resnest50中的stage。最后,我们定义了ResNeSt50类,它实现了整个resnest50模型。
在ResNeStBottleneck类中,我们首先定义了3个卷积层和3个Batch Normalization层。接下来,我们将输入x和残差连接进行加和操作,并将结果通过ReLU激活函数。在forward函数中,我们实现了前向传播。
在ResNeStStage类中,我们使用nn.ModuleList来存储多个ResNeStBottleneck块,并在forward函数中将x传递到每个块中。
在ResNeSt50类中,我们首先定义了输入卷积层和Batch Normalization层,并将结果通过ReLU激活函数。接下来,我们定义了4个stage,并将它们串联在一起。最后,我们定义了全局平均池化层和全连接层。
现在,我们已经成功地实现了resnest50模型,并将通道数改为1。
阅读全文