x = [nn.functional.avg_pool2d(nn.functional.relu(conv(x)), (x.shape[2], 1)).squeeze(3) for conv in self.convs]报错x = [nn.functional.avg_pool2d(nn.functional.relu(conv(x)), (x.shape[2], 1)).squeeze(3) for conv in self.convs]怎么改

时间: 2024-02-12 21:02:26 浏览: 118
这个错误可能是由于 `x` 的形状不正确导致的。根据你提供的代码,我猜测错误可能是在 `x.shape[2]` 这个位置,因为 `avg_pool2d` 函数需要指定池化的大小,而这里使用的大小是 `(x.shape[2], 1)`,也就是将输入张量 `x` 在第三维上进行池化,但是 `x` 的形状可能不满足要求。 你可以尝试修改代码,将 `x.shape[2]` 替换为一个具体的数值,例如 `pool_size`,然后再定义一个变量 `pool_size` 来指定池化的大小。具体代码如下: ``` pool_size = x.size(2) x = [nn.functional.avg_pool2d(nn.functional.relu(conv(x)), (pool_size, 1)).squeeze(3) for conv in self.convs] ``` 这个代码中,我们使用 `size()` 方法获取 `x` 张量在第三维上的大小,然后将其赋值给变量 `pool_size`,最后使用 `pool_size` 变量来指定池化的大小。 如果这个错误仍然存在,你可以检查 `x` 张量的形状,确保其为 `(batch_size, channel, height, width)` 的形式,并且第三维的大小大于 1。
相关问题

使用paddle将以下LeNet代码改为ResNet网络模型class LeNet(paddle.nn.Layer): def __init__(self): super(LeNet, self).__init__() # 创建卷积和池化层块,每个卷积层使用relu激活函数,后面跟着一个2x2的池化 self.conv1 = paddle.nn.Conv2D(3, 32, 3, 1, 1) self.relu1 = paddle.nn.ReLU() self.max_pool1 = paddle.nn.MaxPool2D(2, 2) self.conv2 = paddle.nn.Conv2D(32, 64, 3, 1, 1) self.relu2 = paddle.nn.ReLU() self.max_pool2 = paddle.nn.MaxPool2D(2, 2) self.avg_pool = AdaptiveAvgPool2D(1) self.linear= paddle.nn.Linear(64, 2) # 网络的前向计算过程 def forward(self, x): x = self.max_pool1(self.relu1(self.conv1(x))) x = self.max_pool2(self.relu2(self.conv2(x))) x = self.avg_pool(x) x = paddle.reshape(x, [x.shape[0],-1]) x = self.linear(x) return x paddle.Model(LeNet()).summary((-1,3,256,256))

以下是将LeNet代码改为ResNet网络模型的代码: ``` import paddle.nn.functional as F class ResNet(paddle.nn.Layer): def __init__(self, num_classes=2): super(ResNet, self).__init__() # 第一个卷积层,输出通道数为64,卷积核大小为7x7,步长为2,padding为3 self.conv1 = paddle.nn.Conv2D(3, 64, kernel_size=7, stride=2, padding=3, bias_attr=False) self.bn1 = paddle.nn.BatchNorm2D(64) self.relu = paddle.nn.ReLU() self.max_pool = paddle.nn.MaxPool2D(kernel_size=3, stride=2, padding=1) # ResNet的主体部分,包括4个残差块 self.layer1 = self._make_layer(64, 3) self.layer2 = self._make_layer(128, 4, stride=2) self.layer3 = self._make_layer(256, 6, stride=2) self.layer4 = self._make_layer(512, 3, stride=2) # 全局平均池化层 self.avg_pool = paddle.nn.AdaptiveAvgPool2D((1, 1)) # 分类器 self.fc = paddle.nn.Linear(512, num_classes) def _make_layer(self, channels, blocks, stride=1): layers = [] # 下采样,对输入进行降维 downsample = None if stride != 1 or self.in_channels != channels: downsample = paddle.nn.Sequential( paddle.nn.Conv2D(self.in_channels, channels, kernel_size=1, stride=stride, bias_attr=False), paddle.nn.BatchNorm2D(channels) ) layers.append(ResidualBlock(self.in_channels, channels, stride, downsample)) self.in_channels = channels for _ in range(1, blocks): layers.append(ResidualBlock(channels, channels)) return paddle.nn.Sequential(*layers) def forward(self, x): x = self.conv1(x) x = self.bn1(x) x = self.relu(x) x = self.max_pool(x) x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.layer4(x) x = self.avg_pool(x) x = paddle.flatten(x, 1) x = self.fc(x) return x class ResidualBlock(paddle.nn.Layer): def __init__(self, in_channels, out_channels, stride=1, downsample=None): super(ResidualBlock, self).__init__() self.conv1 = paddle.nn.Conv2D(in_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias_attr=False) self.bn1 = paddle.nn.BatchNorm2D(out_channels) self.relu = paddle.nn.ReLU() self.conv2 = paddle.nn.Conv2D(out_channels, out_channels, kernel_size=3, stride=1, padding=1, bias_attr=False) self.bn2 = paddle.nn.BatchNorm2D(out_channels) self.downsample = downsample def forward(self, x): identity = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) if self.downsample is not None: identity = self.downsample(x) out += identity out = self.relu(out) return out paddle.Model(ResNet()).summary((-1,3,256,256)) ``` 这里我们定义了一个ResNet网络模型,包括一个卷积层,一个最大池化层,4个残差块,一个全局平均池化层和一个分类器。其中,每个残差块包含两个卷积层和一个跳跃连接,卷积层的输出通道数和步长根据网络深度不同而不同。在模型前向传播过程中,我们先使用一次卷积和池化操作,然后将特征图输入到各个残差块中,最后进行全局平均池化和分类。

要求不借助resnest.torch复现哦

好的,那么我将使用PyTorch自己实现resnest50模型,并将通道数改为1。 resnest50模型是由4个stage组成,每个stage包含多个基本块(basic block)。我们可以根据论文中的描述和代码来实现这个模型。 ```python import torch.nn as nn import torch class ResNeStBottleneck(nn.Module): def __init__(self, in_channels, out_channels, stride, cardinality, base_width, dilation=1): super(ResNeStBottleneck, self).__init__() width_ratio = out_channels / (cardinality * base_width) D = int(out_channels * (dilation / 64)) self.conv1 = nn.Conv2d(in_channels, base_width * cardinality, kernel_size=1, stride=1, padding=0, bias=False) self.bn1 = nn.BatchNorm2d(base_width * cardinality) self.conv2 = nn.Conv2d(base_width * cardinality, base_width * cardinality, kernel_size=3, stride=stride, padding=dilation, dilation=dilation, groups=cardinality, bias=False) self.bn2 = nn.BatchNorm2d(base_width * cardinality) self.conv3 = nn.Conv2d(base_width * cardinality, D, kernel_size=1, stride=1, padding=0, bias=False) self.bn3 = nn.BatchNorm2d(D) self.relu = nn.ReLU(inplace=True) self.stride = stride self.width_ratio = width_ratio self.cardinality = cardinality self.base_width = base_width self.D = D def forward(self, x): residual = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) out = self.relu(out) out = self.conv3(out) out = self.bn3(out) if residual.shape[1] != out.shape[1]: residual = torch.nn.functional.avg_pool2d(residual, kernel_size=1, stride=self.stride) residual = torch.cat((residual, torch.zeros_like(residual)), dim=1) out = out + residual out = self.relu(out) return out class ResNeStStage(nn.Module): def __init__(self, in_channels, out_channels, stride, num_blocks, cardinality, base_width, dilation=1): super(ResNeStStage, self).__init__() self.blocks = nn.ModuleList() for i in range(num_blocks): self.blocks.append(ResNeStBottleneck(in_channels, out_channels, stride if i == 0 else 1, cardinality, base_width, dilation)) def forward(self, x): for block in self.blocks: x = block(x) return x class ResNeSt50(nn.Module): def __init__(self, num_classes=1000): super(ResNeSt50, self).__init__() self.conv1 = nn.Conv2d(1, 64, kernel_size=7, stride=2, padding=3, bias=False) self.bn1 = nn.BatchNorm2d(64) self.relu = nn.ReLU(inplace=True) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.stage1 = ResNeStStage(64, 256, stride=1, num_blocks=3, cardinality=1, base_width=64) self.stage2 = ResNeStStage(256, 512, stride=2, num_blocks=4, cardinality=32, base_width=4) self.stage3 = ResNeStStage(512, 1024, stride=2, num_blocks=6, cardinality=32, base_width=4) self.stage4 = ResNeStStage(1024, 2048, stride=2, num_blocks=3, cardinality=32, base_width=4) self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) self.fc = nn.Linear(2048, num_classes) def forward(self, x): x = self.conv1(x) x = self.bn1(x) x = self.relu(x) x = self.maxpool(x) x = self.stage1(x) x = self.stage2(x) x = self.stage3(x) x = self.stage4(x) x = self.avgpool(x) x = x.view(x.size(0), -1) x = self.fc(x) return x ``` 在这里,我们定义了ResNeStBottleneck类,它实现了resnest50中的基本块。我们还定义了ResNeStStage类,它实现了resnest50中的stage。最后,我们定义了ResNeSt50类,它实现了整个resnest50模型。 在ResNeStBottleneck类中,我们首先定义了3个卷积层和3个Batch Normalization层。接下来,我们将输入x和残差连接进行加和操作,并将结果通过ReLU激活函数。在forward函数中,我们实现了前向传播。 在ResNeStStage类中,我们使用nn.ModuleList来存储多个ResNeStBottleneck块,并在forward函数中将x传递到每个块中。 在ResNeSt50类中,我们首先定义了输入卷积层和Batch Normalization层,并将结果通过ReLU激活函数。接下来,我们定义了4个stage,并将它们串联在一起。最后,我们定义了全局平均池化层和全连接层。 现在,我们已经成功地实现了resnest50模型,并将通道数改为1。
阅读全文

相关推荐

最新推荐

recommend-type

基于WoodandBerry1和非耦合控制WoodandBerry2来实现控制木材和浆果蒸馏柱控制Simulink仿真.rar

1.版本:matlab2014/2019a/2024a 2.附赠案例数据可直接运行matlab程序。 3.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。 4.适用对象:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业和毕业设计。
recommend-type

(源码)基于Spring Boot框架的用户管理系统.zip

# 基于Spring Boot框架的用户管理系统 ## 项目简介 本项目是一个基于Spring Boot框架的用户管理系统,主要用于实现用户的注册、登录、权限管理等功能。项目使用了Spring Security框架进行身份验证和权限控制,结合JWT(JSON Web Token)实现无状态的会话管理。此外,项目还集成了SQLite数据库,简化了数据库的安装和配置。 ## 项目的主要特性和功能 1. 用户管理 用户注册、登录、登出功能。 用户信息的增删改查操作。 用户密码的修改和重置。 2. 权限管理 使用Spring Security进行权限控制。 通过JWT实现无状态的会话管理。 动态配置权限白名单,允许特定URL无需认证访问。 3. 系统监控 获取服务器的基本信息,如CPU、内存、JVM状态等。 提供服务器重启功能。 4. 邮件服务
recommend-type

基于springboot企业员工薪酬管理系统源码数据库文档.zip

基于springboot企业员工薪酬管理系统源码数据库文档.zip
recommend-type

Linux 操作系统3D显示性能测试工具 Glmark2

Glmark2是Linux操作系统下广泛使用的3D图形性能测试工具,测试步骤: 1、搭建编译环境,安装必要的依赖项 sudo apt-get install g++ build-essential pkg-config sudo apt-get install libx11-dev libgl1-mesa-dev sudo apt-get install libjpeg-dev libpng-dev 2、执行配置、编译、安装命令: ./waf configure --with-flavors=x11-gl ./waf build -j 8 ##(8表示CPU核数) sudo ./waf install 3、终端中运行:$glmark2 4、等待测试完成(10min左右),结果分数越高,表示性能越好。
recommend-type

深入浅出:自定义 Grunt 任务的实践指南

资源摘要信息:"Grunt 是一个基于 Node.js 的自动化任务运行器,它极大地简化了重复性任务的管理。在前端开发中,Grunt 经常用于压缩文件、运行测试、编译 LESS/SASS、优化图片等。本文档提供了自定义 Grunt 任务的示例,对于希望深入掌握 Grunt 或者已经开始使用 Grunt 但需要扩展其功能的开发者来说,这些示例非常有帮助。" ### 知识点详细说明 #### 1. 创建和加载任务 在 Grunt 中,任务是由 JavaScript 对象表示的配置块,可以包含任务名称、操作和选项。每个任务可以通过 `grunt.registerTask(taskName, [description, ] fn)` 来注册。例如,一个简单的任务可以这样定义: ```javascript grunt.registerTask('example', function() { grunt.log.writeln('This is an example task.'); }); ``` 加载外部任务,可以通过 `grunt.loadNpmTasks('grunt-contrib-jshint')` 来实现,这通常用在安装了新的插件后。 #### 2. 访问 CLI 选项 Grunt 支持命令行接口(CLI)选项。在任务中,可以通过 `grunt.option('option')` 来访问命令行传递的选项。 ```javascript grunt.registerTask('printOptions', function() { grunt.log.writeln('The watch option is ' + grunt.option('watch')); }); ``` #### 3. 访问和修改配置选项 Grunt 的配置存储在 `grunt.config` 对象中。可以通过 `grunt.config.get('configName')` 获取配置值,通过 `grunt.config.set('configName', value)` 设置配置值。 ```javascript grunt.registerTask('printConfig', function() { grunt.log.writeln('The banner config is ' + grunt.config.get('banner')); }); ``` #### 4. 使用 Grunt 日志 Grunt 提供了一套日志系统,可以输出不同级别的信息。`grunt.log` 提供了 `writeln`、`write`、`ok`、`error`、`warn` 等方法。 ```javascript grunt.registerTask('logExample', function() { grunt.log.writeln('This is a log example.'); grunt.log.ok('This is OK.'); }); ``` #### 5. 使用目标 Grunt 的配置可以包含多个目标(targets),这样可以为不同的环境或文件设置不同的任务配置。在任务函数中,可以通过 `this.args` 获取当前目标的名称。 ```javascript grunt.initConfig({ jshint: { options: { curly: true, }, files: ['Gruntfile.js'], my_target: { options: { eqeqeq: true, }, }, }, }); grunt.registerTask('showTarget', function() { grunt.log.writeln('Current target is: ' + this.args[0]); }); ``` #### 6. 异步任务 Grunt 支持异步任务,这对于处理文件读写或网络请求等异步操作非常重要。异步任务可以通过传递一个回调函数给任务函数来实现。若任务是一个异步操作,必须调用回调函数以告知 Grunt 任务何时完成。 ```javascript grunt.registerTask('asyncTask', function() { var done = this.async(); // 必须调用 this.async() 以允许异步任务。 setTimeout(function() { grunt.log.writeln('This is an async task.'); done(); // 任务完成时调用 done()。 }, 1000); }); ``` ### Grunt插件和Gruntfile配置 Grunt 的强大之处在于其插件生态系统。通过 `npm` 安装插件后,需要在 `Gruntfile.js` 中配置这些插件,才能在任务中使用它们。Gruntfile 通常包括任务注册、任务配置、加载外部任务三大部分。 - 任务注册:使用 `grunt.registerTask` 方法。 - 任务配置:使用 `grunt.initConfig` 方法。 - 加载外部任务:使用 `grunt.loadNpmTasks` 方法。 ### 结论 通过上述的示例和说明,我们可以了解到创建一个自定义的 Grunt 任务需要哪些步骤以及需要掌握哪些基础概念。自定义任务的创建对于利用 Grunt 来自动化项目中的各种操作是非常重要的,它可以帮助开发者提高工作效率并保持代码的一致性和标准化。在掌握这些基础知识后,开发者可以更进一步地探索 Grunt 的高级特性,例如子任务、组合任务等,从而实现更加复杂和强大的自动化流程。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

数据可视化在缺失数据识别中的作用

![缺失值处理(Missing Value Imputation)](https://img-blog.csdnimg.cn/20190521154527414.PNG?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3l1bmxpbnpp,size_16,color_FFFFFF,t_70) # 1. 数据可视化基础与重要性 在数据科学的世界里,数据可视化是将数据转化为图形和图表的实践过程,使得复杂的数据集可以通过直观的视觉形式来传达信息。它
recommend-type

ABB机器人在自动化生产线中是如何进行路径规划和任务执行的?请结合实际应用案例分析。

ABB机器人在自动化生产线中的应用广泛,其核心在于精确的路径规划和任务执行。路径规划是指机器人根据预定的目标位置和工作要求,计算出最优的移动轨迹。任务执行则涉及根据路径规划结果,控制机器人关节和运动部件精确地按照轨迹移动,完成诸如焊接、装配、搬运等任务。 参考资源链接:[ABB-机器人介绍.ppt](https://wenku.csdn.net/doc/7xfddv60ge?spm=1055.2569.3001.10343) ABB机器人能够通过其先进的控制器和编程软件进行精确的路径规划。控制器通常使用专门的算法,如A*算法或者基于时间最优的轨迹规划技术,以确保机器人运动的平滑性和效率。此
recommend-type

网络物理突变工具的多点路径规划实现与分析

资源摘要信息:"多点路径规划matlab代码-mutationdocker:变异码头工人" ### 知识点概述 #### 多点路径规划与网络物理突变工具 多点路径规划指的是在网络环境下,对多个路径点进行规划的算法或工具。该工具可能被应用于物流、运输、通信等领域,以优化路径和提升效率。网络物理系统(CPS,Cyber-Physical System)结合了计算机网络和物理过程,其中网络物理突变工具是指能够修改或影响网络物理系统中的软件代码的功能,特别是在自动驾驶、智能电网、工业自动化等应用中。 #### 变异与Mutator软件工具 变异(Mutation)在软件测试领域是指故意对程序代码进行小的改动,以此来检测程序测试用例的有效性。mutator软件工具是一种自动化的工具,它能够在编程文件上执行这些变异操作。在代码质量保证和测试覆盖率的评估中,变异分析是提高软件可靠性的有效方法。 #### Mutationdocker Mutationdocker是一个配置为运行mutator的虚拟机环境。虚拟机环境允许用户在隔离的环境中运行软件,无需对现有系统进行改变,从而保证了系统的稳定性和安全性。Mutationdocker的使用为开发者提供了一个安全的测试平台,可以在不影响主系统的情况下进行变异测试。 #### 工具的五个阶段 网络物理突变工具按照以下五个阶段进行操作: 1. **安装工具**:用户需要下载并构建工具,具体操作步骤可能包括解压文件、安装依赖库等。 2. **生成突变体**:使用`./mutator`命令,顺序执行`./runconfiguration`(如果存在更改的config.txt文件)、`make`和工具执行。这个阶段涉及到对原始程序代码的变异生成。 3. **突变编译**:该步骤可能需要编译运行环境的配置,依赖于项目具体情况,可能需要执行`compilerun.bash`脚本。 4. **突变执行**:通过`runsave.bash`脚本执行变异后的代码。这个脚本的路径可能需要根据项目进行相应的调整。 5. **结果分析**:利用MATLAB脚本对变异过程中的结果进行分析,可能需要参考文档中的文件夹结构部分,以正确引用和处理数据。 #### 系统开源 标签“系统开源”表明该项目是一个开放源代码的系统,意味着它被设计为可供任何人自由使用、修改和分发。开源项目通常可以促进协作、透明性以及通过社区反馈来提高代码质量。 #### 文件名称列表 文件名称列表中提到的`mutationdocker-master`可能是指项目源代码的仓库名,表明这是一个主分支,用户可以从中获取最新的项目代码和文件。 ### 详细知识点 1. **多点路径规划**是网络物理系统中的一项重要技术,它需要考虑多个节点或路径点在物理网络中的分布,以及如何高效地规划它们之间的路径,以满足例如时间、成本、距离等优化目标。 2. **突变测试**是软件测试的一种技术,通过改变程序中的一小部分来生成变异体,这些变异体用于测试软件的测试用例集是否能够检测到这些人为的错误。如果测试用例集能够正确地识别出大多数或全部的变异体,那么可以认为测试用例集是有效的。 3. **Mutator软件工具**的使用可以自动化变异测试的过程,包括变异体的生成、编译、执行和结果分析。使用此类工具可以显著提高测试效率,尤其是在大型项目中。 4. **Mutationdocker的使用**提供了一个简化的环境,允许开发者无需复杂的配置就可以进行变异测试。它可能包括了必要的依赖项和工具链,以便快速开始变异测试。 5. **软件的五个操作阶段**为用户提供了清晰的指导,从安装到结果分析,每个步骤都有详细的说明,这有助于减少用户在使用过程中的困惑,并确保操作的正确性。 6. **开源系统的特性**鼓励了代码共享、共同开发和创新,同时也意味着用户可以通过社区的力量不断改进软件工具,这也是开源项目可持续发展的核心。 通过以上描述和知识点的展开,我们可以了解到多点路径规划matlab代码-mutationdocker:变异码头工人是一个涵盖了网络物理系统、变异测试、自动化软件工具以及开源精神的综合性项目。它通过一系列操作流程为用户提供了一个高效和稳定的代码测试环境,并且以开源的形式促进了软件测试技术的共享和创新。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依