dataframe中drop_duplicates,根据两个键去重
时间: 2023-09-21 13:08:01 浏览: 101
可以使用`drop_duplicates`函数的`subset`参数指定需要去重的列,例如:
```python
df.drop_duplicates(subset=['col1', 'col2'], inplace=True)
```
其中,`col1`和`col2`就是需要根据哪两个键去重的列名。`inplace=True`表示在原数据上进行修改,如果不需要修改原数据,可以省略该参数。
相关问题
drop_duplicates详解
drop_duplicates()函数是Pandas库中的一个函数,用于去除DataFrame中的重复行。该函数有四个参数,分别是subset、keep、inplace和ignore_index。具体介绍如下:
1. subset:指定列名,表示根据这些列进行去重,默认为None,表示所有列都参与去重。
2. keep:指定保留哪个重复的元素,可选值为'first'、'last'和False,默认为'first',表示保留第一个出现的重复元素。
3. inplace:指定是否在原DataFrame上进行修改,可选值为True和False,默认为False,表示不在原DataFrame上进行修改。
4. ignore_index:指定是否忽略原来的索引,可选值为True和False,默认为False,表示不忽略原来的索引。
下面是一个示例,演示如何使用drop_duplicates()函数去除DataFrame中的重复行:
```python
import pandas as pd
# 创建一个DataFrame
df = pd.DataFrame({'A': [1, 1, 2, 2], 'B': [3, 4, 4, 5], 'C': [6, 7, 7, 8]})
# 去除重复行
df.drop_duplicates(inplace=True)
# 输出去重后的结果
print(df)
```
输出结果为:
```
A B C
0 1 3 6
1 1 4 7
2 2 4 7
3 2 5 8
```
可以看到,原来的DataFrame中有两行是重复的,经过drop_duplicates()函数处理后,重复的行被去除了。
这两个方式求交集为什么结果不一样?方法一:df_merged2 = pd.merge(bp_rp, j_k, on=['RA', 'DEC'],how = "inner") 方法二:duplicates = ra_dec[ra_dec.duplicated()] df4=duplicates.drop_duplicates( subset=None, keep='first', inplace=False)
方法一和方法二的结果不一样的原因是两种方法对于重复值的处理方式不同。在方法一中,两个 DataFrame 按照列 'RA' 和 'DEC' 进行内连接,只保留两个 DataFrame 中都存在的行。而在方法二中,首先使用 `duplicates = ra_dec[ra_dec.duplicated()]` 选出重复的行,然后使用 `drop_duplicates()` 函数对这些重复行进行去重,保留其中的第一个(`keep='first'`)。
因此,如果 DataFrame 中存在多个相同的 'RA' 和 'DEC',方法二会将其去重,只保留第一个出现的行;
阅读全文