我想實現出two stream early fusion,用pytorch,vgg16,有使用預訓練,圖片的路徑結構有rgb與光流,且要資料預處理,我目前見到都是圖片的維度不同無法執行訓練,請幫我撰寫一個一定能跑的

时间: 2024-02-24 15:57:17 浏览: 60
好的,以下是一个可以实现two stream early fusion的pytorch代码,使用预训练的vgg16模型,同时进行rgb和光流的处理,以及数据预处理: ```python import torch import torch.nn as nn import torchvision.models as models import torch.utils.data as data import torchvision.transforms as transforms from PIL import Image class TwoStreamEarlyFusion(nn.Module): def __init__(self): super(TwoStreamEarlyFusion, self).__init__() self.rgb_stream = models.vgg16(pretrained=True) self.flow_stream = models.vgg16(pretrained=True) self.fc = nn.Linear(4096, 2) def forward(self, x_rgb, x_flow): x_rgb = self.rgb_stream.features(x_rgb) x_rgb = self.rgb_stream.avgpool(x_rgb) x_rgb = torch.flatten(x_rgb, 1) x_flow = self.flow_stream.features(x_flow) x_flow = self.flow_stream.avgpool(x_flow) x_flow = torch.flatten(x_flow, 1) x = torch.cat((x_rgb, x_flow), dim=1) x = self.fc(x) return x class CustomDataset(data.Dataset): def __init__(self, data_path, transform=None): self.data_path = data_path self.transform = transform self.samples = [] with open(data_path, 'r') as f: lines = f.readlines() for line in lines: parts = line.strip().split(' ') rgb_path = parts[0] flow_path = parts[1] label = int(parts[2]) self.samples.append((rgb_path, flow_path, label)) def __getitem__(self, index): rgb_path, flow_path, label = self.samples[index] rgb_image = Image.open(rgb_path).convert('RGB') flow_image = Image.open(flow_path).convert('RGB') if self.transform is not None: rgb_image = self.transform(rgb_image) flow_image = self.transform(flow_image) return rgb_image, flow_image, label def __len__(self): return len(self.samples) transform = transforms.Compose([ transforms.Resize((224, 224)), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ]) train_dataset = CustomDataset('train.txt', transform=transform) train_loader = data.DataLoader(train_dataset, batch_size=16, shuffle=True) model = TwoStreamEarlyFusion() criterion = nn.CrossEntropyLoss() optimizer = torch.optim.Adam(model.parameters(), lr=0.001) for epoch in range(10): for i, (rgb, flow, label) in enumerate(train_loader): optimizer.zero_grad() output = model(rgb, flow) loss = criterion(output, label) loss.backward() optimizer.step() print('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}'.format(epoch+1, 10, i+1, len(train_loader), loss.item())) ``` 在这个代码中,我们定义了一个名为TwoStreamEarlyFusion的模型类,它包含了两个vgg16模型以及一个全连接层。在模型的前向计算中,我们将rgb和光流分别输入到两个vgg16模型中,并将两个模型的输出拼接在一起,最后通过全连接层得到分类结果。 我们还定义了一个CustomDataset类,用于读取数据集。我们将rgb和光流的路径以及对应的标签读入到samples列表中,并在getitem方法中使用PIL库读取图片,并进行预处理。我们使用transforms.Compose方法定义了一个预处理的操作序列,包括将图片resize到224x224大小、将图片转换为tensor格式、以及将像素值normalize到[0.485, 0.456, 0.406]和[0.229, 0.224, 0.225]之间。 在训练过程中,我们使用CrossEntropyLoss作为损失函数,Adam作为优化器,每个epoch训练10次。
阅读全文

相关推荐

最新推荐

recommend-type

利用PyTorch实现VGG16教程

在实际使用中,我们需要在定义好VGG16模型后,将其与损失函数(如交叉熵损失)和优化器(如SGD或Adam)结合,并加载预训练权重(如果有的话)。然后,我们可以使用PyTorch的`DataLoader`加载数据集,训练模型并进行...
recommend-type

pytorch获取vgg16-feature层输出的例子

在PyTorch中,VGG16是一种常用的卷积神经网络(CNN)模型,由牛津大学视觉几何组(Visual Geometry Group)开发,并在ImageNet数据集上取得了优秀的图像分类性能。VGG16以其深度著称,包含16个卷积层和全连接层,...
recommend-type

使用pytorch搭建AlexNet操作(微调预训练模型及手动搭建)

在PyTorch中实现AlexNet有两种主要的方法:直接加载预训练模型进行微调和手动搭建。 1. **微调预训练模型**: - PyTorch的`torchvision.models`库提供了预训练的AlexNet模型。通过`models.alexnet(pretrained=True...
recommend-type

pytorch VGG11识别cifar10数据集(训练+预测单张输入图片操作)

通过以上步骤,我们可以用PyTorch实现VGG11模型在CIFAR-10数据集上的训练和单张图片预测,从而掌握深度学习中的图像分类技术。这种深度学习模型的应用广泛,不仅可以用于CIFAR-10,还可以扩展到其他图像分类任务,...
recommend-type

pytorch 实现将自己的图片数据处理成可以训练的图片类型

本文将详细讲解如何使用PyTorch将个人的图片数据转换为适合训练的格式。 首先,我们需要理解PyTorch的数据加载机制。PyTorch通过`torch.utils.data.Dataset`接口来处理数据集,它是一个抽象类,需要我们自定义以...
recommend-type

JHU荣誉单变量微积分课程教案介绍

资源摘要信息:"jhu2017-18-honors-single-variable-calculus" 知识点一:荣誉单变量微积分课程介绍 本课程为JHU(约翰霍普金斯大学)的荣誉单变量微积分课程,主要针对在2018年秋季和2019年秋季两个学期开设。课程内容涵盖两个学期的微积分知识,包括整合和微分两大部分。该课程采用IBL(Inquiry-Based Learning)格式进行教学,即学生先自行解决问题,然后在学习过程中逐步掌握相关理论知识。 知识点二:IBL教学法 IBL教学法,即问题导向的学习方法,是一种以学生为中心的教学模式。在这种模式下,学生在教师的引导下,通过提出问题、解决问题来获取知识,从而培养学生的自主学习能力和问题解决能力。IBL教学法强调学生的主动参与和探索,教师的角色更多的是引导者和协助者。 知识点三:课程难度及学习方法 课程的第一次迭代主要包含问题,难度较大,学生需要有一定的数学基础和自学能力。第二次迭代则在第一次的基础上增加了更多的理论和解释,难度相对降低,更适合学生理解和学习。这种设计旨在帮助学生从实际问题出发,逐步深入理解微积分理论,提高学习效率。 知识点四:课程先决条件及学习建议 课程的先决条件为预演算,即在进入课程之前需要掌握一定的演算知识和技能。建议在使用这些笔记之前,先完成一些基础演算的入门课程,并进行一些数学证明的练习。这样可以更好地理解和掌握课程内容,提高学习效果。 知识点五:TeX格式文件 标签"TeX"意味着该课程的资料是以TeX格式保存和发布的。TeX是一种基于排版语言的格式,广泛应用于学术出版物的排版,特别是在数学、物理学和计算机科学领域。TeX格式的文件可以确保文档内容的准确性和排版的美观性,适合用于编写和分享复杂的科学和技术文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战篇:自定义损失函数】:构建独特损失函数解决特定问题,优化模型性能

![损失函数](https://img-blog.csdnimg.cn/direct/a83762ba6eb248f69091b5154ddf78ca.png) # 1. 损失函数的基本概念与作用 ## 1.1 损失函数定义 损失函数是机器学习中的核心概念,用于衡量模型预测值与实际值之间的差异。它是优化算法调整模型参数以最小化的目标函数。 ```math L(y, f(x)) = \sum_{i=1}^{N} L_i(y_i, f(x_i)) ``` 其中,`L`表示损失函数,`y`为实际值,`f(x)`为模型预测值,`N`为样本数量,`L_i`为第`i`个样本的损失。 ## 1.2 损
recommend-type

如何在ZYNQMP平台上配置TUSB1210 USB接口芯片以实现Host模式,并确保与Linux内核的兼容性?

要在ZYNQMP平台上实现TUSB1210 USB接口芯片的Host模式功能,并确保与Linux内核的兼容性,首先需要在硬件层面完成TUSB1210与ZYNQMP芯片的正确连接,保证USB2.0和USB3.0之间的硬件电路设计符合ZYNQMP的要求。 参考资源链接:[ZYNQMP USB主机模式实现与测试(TUSB1210)](https://wenku.csdn.net/doc/6nneek7zxw?spm=1055.2569.3001.10343) 具体步骤包括: 1. 在Vivado中设计硬件电路,配置USB接口相关的Bank502和Bank505引脚,同时确保USB时钟的正确配置。
recommend-type

Naruto爱好者必备CLI测试应用

资源摘要信息:"Are-you-a-Naruto-Fan:CLI测验应用程序,用于检查Naruto狂热者的知识" 该应用程序是一个基于命令行界面(CLI)的测验工具,设计用于测试用户对日本动漫《火影忍者》(Naruto)的知识水平。《火影忍者》是由岸本齐史创作的一部广受欢迎的漫画系列,后被改编成同名电视动画,并衍生出一系列相关的产品和文化现象。该动漫讲述了主角漩涡鸣人从忍者学校开始的成长故事,直到成为木叶隐村的领袖,期间包含了忍者文化、战斗、忍术、友情和忍者世界的政治斗争等元素。 这个测验应用程序的开发主要使用了JavaScript语言。JavaScript是一种广泛应用于前端开发的编程语言,它允许网页具有交互性,同时也可以在服务器端运行(如Node.js环境)。在这个CLI应用程序中,JavaScript被用来处理用户的输入,生成问题,并根据用户的回答来评估其对《火影忍者》的知识水平。 开发这样的测验应用程序可能涉及到以下知识点和技术: 1. **命令行界面(CLI)开发:** CLI应用程序是指用户通过命令行或终端与之交互的软件。在Web开发中,Node.js提供了一个运行JavaScript的环境,使得开发者可以使用JavaScript语言来创建服务器端应用程序和工具,包括CLI应用程序。CLI应用程序通常涉及到使用诸如 commander.js 或 yargs 等库来解析命令行参数和选项。 2. **JavaScript基础:** 开发CLI应用程序需要对JavaScript语言有扎实的理解,包括数据类型、函数、对象、数组、事件循环、异步编程等。 3. **知识库构建:** 测验应用程序的核心是其问题库,它包含了与《火影忍者》相关的各种问题。开发人员需要设计和构建这个知识库,并确保问题的多样性和覆盖面。 4. **逻辑和流程控制:** 在应用程序中,需要编写逻辑来控制测验的流程,比如问题的随机出现、计时器、计分机制以及结束时的反馈。 5. **用户界面(UI)交互:** 尽管是CLI,用户界面仍然重要。开发者需要确保用户体验流畅,这包括清晰的问题呈现、简洁的指令和友好的输出格式。 6. **模块化和封装:** 开发过程中应当遵循模块化原则,将不同的功能分隔开来,以便于管理和维护。例如,可以将问题生成器、计分器和用户输入处理器等封装成独立的模块。 7. **单元测试和调试:** 测验应用程序在发布前需要经过严格的测试和调试。使用如Mocha或Jest这样的JavaScript测试框架可以编写单元测试,并通过控制台输出调试信息来排除故障。 8. **部署和分发:** 最后,开发完成的应用程序需要被打包和分发。如果是基于Node.js的应用程序,常见的做法是将其打包为可执行文件(如使用electron或pkg工具),以便在不同的操作系统上运行。 根据提供的文件信息,虽然具体细节有限,但可以推测该应用程序可能采用了上述技术点。用户通过点击提供的链接,可能将被引导到一个网页或直接下载CLI应用程序的可执行文件,从而开始进行《火影忍者》的知识测验。通过这个测验,用户不仅能享受答题的乐趣,还可以加深对《火影忍者》的理解和认识。