使用mindspore框架使用resnet18在fer2013数据集上进行图像识别
时间: 2023-12-18 13:03:41 浏览: 185
表情识别fer2013数据集
5星 · 资源好评率100%
好的,以下是使用MindSpore框架在FER2013数据集上进行图像识别的步骤:
1. 下载FER2013数据集:可以到Kaggle上下载fer2013.csv文件,并将其放在指定的目录下。
2. 数据处理:使用pandas库读取fer2013.csv文件,然后将数据集分成训练集和测试集。可以使用sklearn库的train_test_split函数来分割数据集。
3. 数据增强:为了提高模型的泛化能力,我们可以使用数据增强技术。MindSpore框架提供了丰富的数据增强操作,如RandomCrop、RandomHorizontalFlip等。
4. 搭建ResNet18模型:使用MindSpore框架搭建ResNet18模型,可以使用MindSpore提供的Model类来实现。
5. 模型训练:使用MindSpore框架进行模型训练,可以使用MindSpore提供的Model.train函数来实现。
6. 模型测试:使用测试集对模型进行测试,可以使用MindSpore提供的Model.eval函数来实现。
7. 模型保存:使用MindSpore框架保存训练好的模型,可以使用MindSpore提供的Model.save_checkpoint函数来实现。
下面是一个使用MindSpore框架在FER2013数据集上进行图像识别的示例代码:
```python
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
import mindspore.dataset as ds
import mindspore.dataset.transforms.c_transforms as C
import mindspore.dataset.vision.c_transforms as CV
import mindspore.nn as nn
import mindspore.ops.operations as P
from mindspore import context, Tensor
from mindspore.train.serialization import load_checkpoint, save_checkpoint
# 1. 下载FER2013数据集
# 2. 数据处理
data = pd.read_csv('fer2013.csv')
pixels = data['pixels'].tolist()
faces = []
for pixel_sequence in pixels:
face = [int(pixel) for pixel in pixel_sequence.split(' ')]
face = np.asarray(face).reshape(48, 48)
faces.append(face.astype(np.uint8))
X = np.asarray(faces)
y = pd.get_dummies(data['emotion']).values
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.1, random_state=42)
# 3. 数据增强
train_transform = CV.Compose([
CV.RandomCrop((44, 44)),
CV.RandomHorizontalFlip(prob=0.5),
CV.ColorJitter(brightness=0.5, contrast=0.5, saturation=0.5),
CV.RandomRotation(30),
CV.Rescale(1.0 / 255.0, 0.0)
])
test_transform = CV.Compose([
CV.Rescale(1.0 / 255.0, 0.0)
])
# 4. 搭建ResNet18模型
class ResNet18(nn.Cell):
def __init__(self):
super(ResNet18, self).__init__()
self.conv1 = nn.Conv2d(1, 64, kernel_size=3, stride=1, padding=1, pad_mode='pad')
self.bn1 = nn.BatchNorm2d(64)
self.relu = nn.ReLU()
self.maxpool = nn.MaxPool2d(kernel_size=2, stride=2, pad_mode='valid')
self.layer1 = nn.SequentialCell(
nn.ResidualBlock(64, 64),
nn.ResidualBlock(64, 64)
)
self.layer2 = nn.SequentialCell(
nn.ResidualBlock(64, 128, stride=2),
nn.ResidualBlock(128, 128)
)
self.layer3 = nn.SequentialCell(
nn.ResidualBlock(128, 256, stride=2),
nn.ResidualBlock(256, 256)
)
self.layer4 = nn.SequentialCell(
nn.ResidualBlock(256, 512, stride=2),
nn.ResidualBlock(512, 512)
)
self.avgpool = nn.AvgPool2d(kernel_size=7, stride=1, pad_mode='valid')
self.flatten = nn.Flatten()
self.fc = nn.Dense(512, 7)
def construct(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = self.avgpool(x)
x = self.flatten(x)
x = self.fc(x)
return x
# 5. 模型训练
batch_size = 32
train_dataset = ds.NumpySlicesDataset({"image": X_train, "label": y_train}, shuffle=True)
train_dataset = train_dataset.map(input_columns=["image"], operations=train_transform, num_parallel_workers=4)
train_dataset = train_dataset.batch(batch_size, drop_remainder=True)
test_dataset = ds.NumpySlicesDataset({"image": X_test, "label": y_test})
test_dataset = test_dataset.map(input_columns=["image"], operations=test_transform, num_parallel_workers=4)
test_dataset = test_dataset.batch(batch_size, drop_remainder=True)
net = ResNet18()
loss_fn = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean')
opt = nn.Momentum(net.trainable_params(), 0.01, 0.9)
model = nn.Model(net, loss_fn, opt, metrics={"acc"})
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
model.train(10, train_dataset)
# 6. 模型测试
model.eval(test_dataset)
# 7. 模型保存
save_checkpoint(model.train_network, "resnet18.ckpt")
```
这是一个简单的示例代码,您可以根据实际情况进行修改。
阅读全文