net.eval() with torch.no_grad(): x = torch.from_numpy(test_data[-seq_length:].reshape(1, seq_length, -1)).float() y_pred = net(x) y_pred = scaler.inverse_transform(y_pred.numpy()) print('Predicted price:', y_pred[0][0])
时间: 2023-06-11 13:06:58 浏览: 105
这段代码的作用是使用训练好的神经网络模型net对测试数据进行预测,并将预测结果反归一化得到实际的预测价格。具体来说:
- net.eval()表示将神经网络模型切换到评估模式,这样可以避免在测试过程中使用dropout等随机性操作,以保证结果的可重复性和准确性。
- torch.no_grad()表示在进行测试前不需要计算梯度,从而减少内存占用和提高速度。
- x = torch.from_numpy(...)将测试数据(test_data)转换成张量形式,并将最后一个时刻的seq_length个数据作为输入,reshape函数将其变为形状为(1, seq_length, -1)的三维张量,其中第一维表示batch_size,此处为1。
- y_pred = net(x)表示将输入数据送入神经网络进行前向计算,得到输出结果y_pred。
- y_pred = scaler.inverse_transform(...)表示将y_pred反归一化,得到实际的预测价格。
- 最后,将预测结果打印输出。
相关问题
解释这段代码for epochs in range(Epochs): loss_mean_train = 0 r2_mean_train = 0 loss_mean_test = 0 r2_mean_test = 0 model.train() for data_l in train_loader: seq, labels = data_l seq, labels = seq.to(device), labels.to(device) optimizer.zero_grad() y_pred = model(seq) labels = torch.squeeze(labels) single_loss = 0 r2_train = 0 for k in range(output_size): single_loss = single_loss + loss_function(y_pred[:, k], labels[:, k]) try: r2_train = r2_train+r2_score(y_pred[:, k].cpu().detach().numpy(), labels[:, k].cpu().detach().numpy()) except: r2_train = 0 single_loss /= output_size nn.utils.clip_grad_norm_(model.parameters(), 1.0) single_loss.backward() optimizer.step() r2_train /=output_size loss_mean_train += single_loss.item() r2_mean_train += r2_train scheduler.step() model.eval() for data_l in test_loader: single_loss = 0 r2_test = 0 seq, labels = data_l seq, labels = seq.to(device), labels.to(device) y_pred = model(seq) for k in range(output_size): single_loss = single_loss + loss_function(y_pred[:, k], labels[:, k]) try: r2_test = r2_test+r2_score(y_pred[:, k].cpu().detach().numpy(), labels[:, k].cpu().detach().numpy()) except: r2_test = 0 single_loss_test = single_loss / output_size r2_test /=output_size loss_mean_test += single_loss.item() r2_mean_test +=r2_test
这段代码是一个训练循环。首先,它设置了一些变量(loss_mean_train、r2_mean_train、loss_mean_test、r2_mean_test)用于记录训练和测试期间的损失和R2得分的平均值。
然后,它将模型设置为训练模式,遍历训练数据集中的批次,并对每个批次进行以下操作:
1.将批次中的序列和标签移动到所选设备上(如GPU);
2.将优化器的梯度清零;
3.使用模型对序列进行预测;
4.计算每个标签的损失和R2得分;
5.将每个标签的损失求平均值,并将梯度传递回模型,并通过调用优化器来更新模型的参数。
在训练数据集的每个批次上完成这些操作后,代码会调用scheduler对象来更新学习率。
接下来,代码将模型设置为评估模式并遍历测试数据集中的批次,对每个批次执行以下操作:
1.将批次中的序列和标签移动到所选设备上(如GPU);
2.使用模型对序列进行预测;
3.计算每个标签的损失和R2得分;
4.将每个标签的损失求平均值,并将其添加到测试集的平均损失中,并将R2得分添加到测试集的平均R2得分中。
最后,训练循环结束后,会返回损失和R2得分的平均值,以便在训练期间进行监控和评估。
下面的这段python代码,哪里有错误,修改一下:import numpy as np import matplotlib.pyplot as plt import pandas as pd import torch import torch.nn as nn from torch.autograd import Variable from sklearn.preprocessing import MinMaxScaler training_set = pd.read_csv('CX2-36_1971.csv') training_set = training_set.iloc[:, 1:2].values def sliding_windows(data, seq_length): x = [] y = [] for i in range(len(data) - seq_length): _x = data[i:(i + seq_length)] _y = data[i + seq_length] x.append(_x) y.append(_y) return np.array(x), np.array(y) sc = MinMaxScaler() training_data = sc.fit_transform(training_set) seq_length = 1 x, y = sliding_windows(training_data, seq_length) train_size = int(len(y) * 0.8) test_size = len(y) - train_size dataX = Variable(torch.Tensor(np.array(x))) dataY = Variable(torch.Tensor(np.array(y))) trainX = Variable(torch.Tensor(np.array(x[1:train_size]))) trainY = Variable(torch.Tensor(np.array(y[1:train_size]))) testX = Variable(torch.Tensor(np.array(x[train_size:len(x)]))) testY = Variable(torch.Tensor(np.array(y[train_size:len(y)]))) class LSTM(nn.Module): def __init__(self, num_classes, input_size, hidden_size, num_layers): super(LSTM, self).__init__() self.num_classes = num_classes self.num_layers = num_layers self.input_size = input_size self.hidden_size = hidden_size self.seq_length = seq_length self.lstm = nn.LSTM(input_size=input_size, hidden_size=hidden_size, num_layers=num_layers, batch_first=True) self.fc = nn.Linear(hidden_size, num_classes) def forward(self, x): h_0 = Variable(torch.zeros( self.num_layers, x.size(0), self.hidden_size)) c_0 = Variable(torch.zeros( self.num_layers, x.size(0), self.hidden_size)) # Propagate input through LSTM ula, (h_out, _) = self.lstm(x, (h_0, c_0)) h_out = h_out.view(-1, self.hidden_size) out = self.fc(h_out) return out num_epochs = 2000 learning_rate = 0.001 input_size = 1 hidden_size = 2 num_layers = 1 num_classes = 1 lstm = LSTM(num_classes, input_size, hidden_size, num_layers) criterion = torch.nn.MSELoss() # mean-squared error for regression optimizer = torch.optim.Adam(lstm.parameters(), lr=learning_rate) # optimizer = torch.optim.SGD(lstm.parameters(), lr=learning_rate) runn = 10 Y_predict = np.zeros((runn, len(dataY))) # Train the model for i in range(runn): print('Run: ' + str(i + 1)) for epoch in range(num_epochs): outputs = lstm(trainX) optimizer.zero_grad() # obtain the loss function loss = criterion(outputs, trainY) loss.backward() optimizer.step() if epoch % 100 == 0: print("Epoch: %d, loss: %1.5f" % (epoch, loss.item())) lstm.eval() train_predict = lstm(dataX) data_predict = train_predict.data.numpy() dataY_plot = dataY.data.numpy() data_predict = sc.inverse_transform(data_predict) dataY_plot = sc.inverse_transform(dataY_plot) Y_predict[i,:] = np.transpose(np.array(data_predict)) Y_Predict = np.mean(np.array(Y_predict)) Y_Predict_T = np.transpose(np.array(Y_Predict))
在这段代码中,可能存在以下错误:
1. 缺少必要的库或模块。
2. training_set 的文件路径是否正确。
3. training_set 的数据处理是否正确。
4. LSTM 模型的定义是否正确。
5. 训练和预测的代码是否正确。
下面是修改后的代码:
```python
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import torch
import torch.nn as nn
from torch.autograd import Variable
from sklearn.preprocessing import MinMaxScaler
# 读取数据
training_set = pd.read_csv('CX2-36_1971.csv')
training_set = training_set.iloc[:, 1:2].values
# 定义数据处理函数
def sliding_windows(data, seq_length):
x = []
y = []
for i in range(len(data) - seq_length):
_x = data[i:(i + seq_length)]
_y = data[i + seq_length]
x.append(_x)
y.append(_y)
return np.array(x), np.array(y)
# 对数据进行归一化处理
sc = MinMaxScaler()
training_data = sc.fit_transform(training_set)
# 定义窗口长度
seq_length = 1
# 对数据进行窗口划分
x, y = sliding_windows(training_data, seq_length)
# 划分训练集和测试集
train_size = int(len(y) * 0.8)
test_size = len(y) - train_size
dataX = Variable(torch.Tensor(np.array(x)))
dataY = Variable(torch.Tensor(np.array(y)))
trainX = Variable(torch.Tensor(np.array(x[1:train_size])))
trainY = Variable(torch.Tensor(np.array(y[1:train_size])))
testX = Variable(torch.Tensor(np.array(x[train_size:len(x)])))
testY = Variable(torch.Tensor(np.array(y[train_size:len(y)])))
# 定义 LSTM 模型
class LSTM(nn.Module):
def __init__(self, num_classes, input_size, hidden_size, num_layers):
super(LSTM, self).__init__()
self.num_classes = num_classes
self.num_layers = num_layers
self.input_size = input_size
self.hidden_size = hidden_size
self.seq_length = seq_length
self.lstm = nn.LSTM(input_size=input_size, hidden_size=hidden_size,
num_layers=num_layers, batch_first=True)
self.fc = nn.Linear(hidden_size, num_classes)
def forward(self, x):
h_0 = Variable(torch.zeros(
self.num_layers, x.size(0), self.hidden_size))
c_0 = Variable(torch.zeros(
self.num_layers, x.size(0), self.hidden_size))
# Propagate input through LSTM
ula, (h_out, _) = self.lstm(x, (h_0, c_0))
h_out = h_out.view(-1, self.hidden_size)
out = self.fc(h_out)
return out
# 定义训练参数
num_epochs = 2000
learning_rate = 0.001
input_size = 1
hidden_size = 2
num_layers = 1
num_classes = 1
# 实例化 LSTM 模型
lstm = LSTM(num_classes, input_size, hidden_size, num_layers)
# 定义损失函数和优化器
criterion = torch.nn.MSELoss()
optimizer = torch.optim.Adam(lstm.parameters(), lr=learning_rate)
# 训练模型
runn = 10
Y_predict = np.zeros((runn, len(dataY)))
for i in range(runn):
print('Run: ' + str(i + 1))
for epoch in range(num_epochs):
outputs = lstm(trainX)
optimizer.zero_grad()
loss = criterion(outputs, trainY)
loss.backward()
optimizer.step()
if epoch % 100 == 0:
print("Epoch: %d, loss: %1.5f" % (epoch, loss.item()))
lstm.eval()
train_predict = lstm(dataX)
data_predict = train_predict.data.numpy()
dataY_plot = dataY.data.numpy()
# 对结果进行反归一化
data_predict = sc.inverse_transform(data_predict)
dataY_plot = sc.inverse_transform(dataY_plot)
Y_predict[i,:] = np.transpose(np.array(data_predict))
Y_Predict = np.mean(Y_predict, axis=0)
Y_Predict_T = np.transpose(np.array(Y_Predict))
```
阅读全文