FC.eval() correct = 0 total = 0 for images, labels in testLoader: images = images.float().to(device) outputs = FC(images).cpu() _, predicted = torch.max(outputs.data, 1) total += labels.size(0) correct += (predicted == labels).sum() print('准确率: %.4f %%' % (100 * correct / total))

时间: 2024-04-02 18:31:53 浏览: 17
这段代码用于对训练好的模型进行测试,并计算模型的准确率。 1. 首先调用 `FC.eval()` 将模型设置为评估模式,以便禁用 dropout 和 batch normalization 等训练相关的操作。 2. 定义两个计数器 `correct` 和 `total`,用于记录模型在测试集上的预测正确数和总样本数。 3. 遍历测试数据集 `testLoader`,将每个 batch 的数据移动到指定的设备上,并通过模型 `FC` 对输入数据进行前向传播,得到预测输出 `outputs`。 4. 对于每个 batch,调用 `torch.max(outputs.data, 1)` 对预测输出中的每行取最大值,并返回最大值和对应的索引。这里我们只需要用到索引,即预测的类别。 5. 对于每个 batch,将 batch 中的样本数 `labels.size(0)` 加到 `total` 中。 6. 对于每个 batch,将预测正确的样本数 `(predicted == labels).sum()` 加到 `correct` 中。 7. 遍历完所有 batch 后,计算模型在测试集上的准确率,并输出结果。 通过这个测试循环,我们可以对模型在测试集上的预测精度进行评估。
相关问题

model = model.eval() model = model.to(device)

这是将 PyTorch 模型转换为评估模式并将其移动到设备(如 GPU 或 CPU)上的代码行。 - `model.eval()` 将模型设置为评估模式,这意味着模型的某些部分,例如 Dropout 和 Batch Normalization,将被禁用或冻结,以便在推理期间保持一致的输出。 - `model.to(device)` 将模型移动到指定的设备上,例如 `device = torch.device("cuda")` 将模型移动到 GPU 上,而 `device = torch.device("cpu")` 将模型移动到 CPU 上。这是为了利用硬件加速来提高模型的推理速度。

# 定义测试函数 def test(model, test_loader, device): model.eval() correct = 0 total = 0 with torch.no_grad(): for index,adj,features,labels in test_loader: #adj, features, labels = adj.to(device), features.to(device), labels.to(device) output, _, _ = model(features) _, predicted = torch.max(output.data, 1) total += labels.size(0) correct += (predicted == labels).sum().item() acc = 100 * correct / total print('Accuracy: {:.2f}%'.format(acc))

这段代码是一个 PyTorch 模型的测试函数,用于在测试集上评估模型的准确率。函数接受三个参数: - `model`:PyTorch 模型对象 - `test_loader`:测试数据集的数据加载器 - `device`:模型所在的设备,可以是 CPU 或 GPU 下面是这个函数的详细说明: 1. `model.eval()`:将模型设置为评估模式,这会关闭一些训练时使用的特定功能,例如 dropout 和 batch normalization。 2. `correct = 0` 和 `total = 0`:初始化正确预测的数量和测试样本的总数量。 3. `with torch.no_grad():`:在评估模式下,我们不需要计算梯度,因此使用 `torch.no_grad()` 上下文管理器来关闭梯度计算。 4. `for index,adj,features,labels in test_loader:`:迭代测试集数据加载器,加载测试数据的节点特征、邻接矩阵和标签。 5. `output, _, _ = model(features)`:使用模型预测节点标签,不需要输出中间层的表示或 attention 分数,因此用下划线 `_` 忽略这些值。 6. `_, predicted = torch.max(output.data, 1)`:从输出中找到每个节点标签的预测值,并计算预测的类别。 7. `total += labels.size(0)` 和 `correct += (predicted == labels).sum().item()`:更新测试样本的总数和正确预测的数量。 8. `acc = 100 * correct / total`:计算测试集准确率。 9. `print('Accuracy: {:.2f}%'.format(acc))`:打印测试集准确率。 这个测试函数可以用于对训练好的图神经网络模型进行测试,得到模型在测试集上的准确率。

相关推荐

import torch import torch.nn as nn import torch.optim as optim import torchvision.datasets as datasets import torchvision.transforms as transforms # 定义超参数 batch_size = 64 learning_rate = 0.001 num_epochs = 10 # 定义数据预处理 transform = transforms.Compose([ transforms.ToTensor(), # 转换为Tensor类型 transforms.Normalize((0.1307,), (0.3081,)) # 标准化,使得均值为0,标准差为1 ]) # 加载MNIST数据集 train_dataset = datasets.MNIST(root='C:/MNIST', train=True, transform=transform, download=True) test_dataset = datasets.MNIST(root='C:/MNIST', train=False, transform=transform, download=True) train_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True) test_loader = torch.utils.data.DataLoader(dataset=test_dataset, batch_size=batch_size, shuffle=False) # 定义CNN模型 class CNN(nn.Module): def __init__(self): super(CNN, self).__init__() self.conv1 = nn.Conv2d(1, 32, kernel_size=3, stride=1, padding=1) self.bn1 = nn.BatchNorm2d(32) self.relu1 = nn.ReLU() self.conv2 = nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1) self.bn2 = nn.BatchNorm2d(64) self.relu2 = nn.ReLU() self.pool = nn.MaxPool2d(kernel_size=2, stride=2) self.fc1 = nn.Linear(64 * 7 * 7, 128) self.relu3 = nn.ReLU() self.fc2 = nn.Linear(128, 10) def forward(self, x): out = self.conv1(x) out = self.bn1(out) out = self.relu1(out) out = self.conv2(out) out = self.bn2(out) out = self.relu2(out) out = self.pool(out) out = out.view(-1, 64 * 7 * 7) out = self.fc1(out) out = self.relu3(out) out = self.fc2(out) return out # 实例化模型并定义损失函数和优化器 model = CNN() criterion = nn.CrossEntropyLoss() optimizer = optim.Adam(model.parameters(), lr=learning_rate) # 训练模型 total_step = len(train_loader) for epoch in range(num_epochs): for i, (images, labels) in enumerate(train_loader): # 前向传播 outputs = model(images) loss = criterion(outputs, labels) # 反向传播和优化 optimizer.zero_grad() loss.backward() optimizer.step() # 每100个batch打印一次训练信息 if (i+1) % 100 == 0: print('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}' .format(epoch+1, num_epochs, i+1, total_step, loss.item())) # 测试模型 model.eval() # 进入测试模式,关闭Dropout和BatchNormalization层 with torch.no_grad(): correct = 0 total = 0 for images, labels in test_loader: outputs = model(images) _, predicted = torch.max(outputs.data, 1) total += labels.size(0) correct += (predicted == labels).sum().item() print('Test Accuracy of the model on the 10000 test images: {} %'.format(100 * correct / total))运行一下此代码

最新推荐

recommend-type

踩坑:pytorch中eval模式下结果远差于train模式介绍

主要介绍了踩坑:pytorch中eval模式下结果远差于train模式介绍,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
recommend-type

毕业设计MATLAB_执行一维相同大小矩阵的QR分解.zip

毕业设计matlab
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB柱状图在信号处理中的应用:可视化信号特征和频谱分析

![matlab画柱状图](https://img-blog.csdnimg.cn/3f32348f1c9c4481a6f5931993732f97.png) # 1. MATLAB柱状图概述** MATLAB柱状图是一种图形化工具,用于可视化数据中不同类别或组的分布情况。它通过绘制垂直条形来表示每个类别或组中的数据值。柱状图在信号处理中广泛用于可视化信号特征和进行频谱分析。 柱状图的优点在于其简单易懂,能够直观地展示数据分布。在信号处理中,柱状图可以帮助工程师识别信号中的模式、趋势和异常情况,从而为信号分析和处理提供有价值的见解。 # 2. 柱状图在信号处理中的应用 柱状图在信号处理
recommend-type

用Spring boot和vue写一个登录注册界面

好的,这是一个比较常见的技术问题,我可以为您提供一些参考资料和思路。首先,您可以使用Spring Boot作为后端框架来处理用户认证和注册的逻辑,比如使用Spring Security实现用户登录认证。同时,您还需要设计相应的数据模型和数据库表结构来存储用户信息。在前端方面,您可以使用Vue.js作为框架来构建登录注册页面,使用Axios来发起API请求并和后端进行交互。当然,在实现过程中,还需要考虑一些具体细节,比如数据校验、安全性和用户体验等方面。希望这些信息能够帮助到您。
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

MATLAB柱状图在数据分析中的作用:从可视化到洞察

![MATLAB柱状图在数据分析中的作用:从可视化到洞察](https://img-blog.csdnimg.cn/img_convert/1a36558cefc0339f7836cca7680c0aef.png) # 1. MATLAB柱状图概述** 柱状图是一种广泛用于数据可视化的图表类型,它使用垂直条形来表示数据中不同类别或组别的值。在MATLAB中,柱状图通过`bar`函数创建,该函数接受数据向量或矩阵作为输入,并生成相应的高度条形。 柱状图的优点在于其简单性和易于理解性。它们可以快速有效地传达数据分布和组别之间的比较。此外,MATLAB提供了广泛的定制选项,允许用户调整条形颜色、
recommend-type

命名ACL和拓展ACL标准ACL的具体区别

命名ACL和标准ACL的主要区别在于匹配条件和作用范围。命名ACL可以基于协议、端口和其他条件进行匹配,并可以应用到接口、VLAN和其他范围。而标准ACL只能基于源地址进行匹配,并只能应用到接口。拓展ACL则可以基于源地址、目的地址、协议、端口和其他条件进行匹配,并可以应用到接口、VLAN和其他范围。