cdh上再安装其他版本的spark客户端
时间: 2023-04-24 20:05:42 浏览: 229
在CDH上安装其他版本的Spark客户端,需要先下载对应版本的Spark安装包,并解压到指定目录。然后,需要在CDH的配置文件中添加Spark的配置信息,包括Spark的安装路径、环境变量等。最后,启动Spark客户端即可。需要注意的是,不同版本的Spark可能会有不兼容的情况,需要根据实际情况进行选择。
相关问题
cdh配置hive on spark
### 回答1:
CDH(Cloudera's Distribution for Hadoop)是Cloudera公司针对Hadoop生态系统进行的一系列软件包和工具的集成,其中包括Hive on Spark的配置。
Hive是一个建立在Hadoop之上的数据仓库基础架构,它提供了类似于SQL的查询语言HiveQL,方便用户使用SQL语言对存储在Hadoop中的大型数据集进行查询和分析。Spark是一个快速、通用的数据处理引擎,具有内存计算的特性,能在内存中高效地处理大规模数据。
在CDH中配置Hive on Spark需要进行以下步骤:
1. 确保CDH集群已经正确安装和配置,并且已经启动了Hive服务和Spark服务。
2. 在CDH管理界面中,选择Hive服务,然后点击“配置”选项卡。
3. 在配置页面中,找到“Hive 服务”下的“Ancillary Service Configuration”部分。在“Spark”部分中,填写正确的Spark主节点地址和端口号。
4. 点击“保存并重启”以应用配置更改。
5. 在CDH管理界面中,选择Spark服务,然后点击“配置”选项卡。
6. 在配置页面中,找到“Spark 特定”的部分。在“Spark 实例模式”中选择“Standalone”,表示将使用独立的Spark集群。
7. 在“Spark 主节点地址”中填写正确的Spark主节点的地址。
8. 点击“保存并重启”以应用配置更改。
9. 配置完成后,可以使用HiveQL语句在Hive中使用Spark进行查询和分析数据。在Hive命令行或Hue界面中,编写需要的查询语句并执行。
通过以上步骤,就可以在CDH上成功配置Hive on Spark。这样就可以同时利用Hive和Spark的强大功能,实现对大规模数据的高效分析和处理。
### 回答2:
CDH配置Hive on Spark是指在CDH平台上配置使用Spark作为Hive的计算引擎。下面是具体的步骤:
1. 首先,确保已经在CDH平台上安装了Hive和Spark组件。
2. 在Hive的配置文件中,需要添加以下参数来启用Hive on Spark:
hive.execution.engine = spark
hive.spark.client.connect.timeout = 300s
hive.spark.client.server.connect.timeout = 300s
3. 在Spark的配置文件中,需要增加以下参数来支持Hive on Spark:
spark.master = yarn-client
spark.deploy.mode = client
spark.submit.deployMode = client
spark.yarn.queue = default
spark.executor.instances = 10
spark.executor.memory = 4G
spark.executor.cores = 2
spark.driver.memory = 4G
4. 然后,重启Hive和Spark的服务。
5. 运行Hive脚本或者Hive命令时,可以在Hive中使用"hive.execution.engine=spark"设置为Spark引擎,或者在命令行中使用"--engine=spark"参数。
配置完成后,Hive会将相应的作业提交给Spark来执行,利用Spark的分布式计算能力加速Hive查询的执行速度。需要注意的是,配置Hive on Spark需要确保CDH平台中的Hive和Spark是兼容的,并且调整Spark的资源配置以满足计算需求。
总之,通过CDH配置Hive on Spark可以充分发挥Spark的并行处理能力,提高Hive查询的执行效率和性能。
### 回答3:
CDH是一种大数据解决方案,用于配置Hive on Spark的步骤如下:
1. 首先,确保已安装CDH集群并启动了Hive和Spark组件。如果还没有安装,请按照CDH文档进行安装和配置。
2. 检查Hive和Spark的版本兼容性。Hive on Spark需要Hive和Spark版本之间的兼容性,查看CDH文档以了解哪些版本适用于您的集群。
3. 在Hive配置文件中启用Hive的Spark支持。打开Hive配置文件(hive-site.xml),设置hive.execution.engine为spark。
4. 配置Spark属性。在Spark配置文件(spark-defaults.conf)中,设置spark.master为yarn-client或yarn-cluster,这取决于您的CDH集群配置。还可以通过设置其他属性来优化Spark执行引擎的性能。
5. 启动Hive服务。重启Hive服务以使配置更改生效。您可以使用以下命令重新启动Hive服务:
sudo service hive-server2 restart
6. 测试Hive on Spark。使用Hive命令行或其他Hive客户端,运行一些Hive查询并确认它们是否在Spark上执行。
配置Hive on Spark可以提供更好的性能和资源利用率。而且,使用Spark作为执行引擎还可以充分利用Spark提供的丰富的数据处理功能和API。通过使用CDH的Hive on Spark配置,您可以更好地处理和分析大规模的数据集。
cdh6.3.2 spark-submit 提交作业到 yarn
### 回答1:
要将作业提交到CDH6.3.2的YARN集群上,需要使用以下命令:
```
spark-submit --master yarn --deploy-mode client --class <main-class> <application-jar> <application-arguments>
```
其中,`<main-class>`是你的应用程序的主类,`<application-jar>`是你的应用程序的jar包路径,`<application-arguments>`是你的应用程序的参数。
例如,如果你的应用程序的主类是`com.example.MyApp`,jar包路径是`/path/to/myapp.jar`,应用程序需要传递两个参数`arg1`和`arg2`,则提交作业的命令如下:
```
spark-submit --master yarn --deploy-mode client --class com.example.MyApp /path/to/myapp.jar arg1 arg2
```
提交作业后,Spark将在YARN集群上启动应用程序,并将日志输出到YARN的应用程序日志中。你可以使用YARN的命令行工具或Web UI来监视应用程序的运行状态和日志输出。
### 回答2:
在CDH6.3.2框架中,使用spark-submit命令可以将作业提交到YARN资源管理器,实现分布式部署执行作业的功能。
具体步骤如下:
1. 在终端中使用spark-submit命令,指定主类名、执行参数等信息。
例如:
```bash
spark-submit \
--class org.apache.spark.examples.SparkPi \
--master yarn \
--deploy-mode cluster \
--num-executors 3 \
--driver-memory 4g \
--executor-memory 2g \
--executor-cores 2 \
/path/to/examples.jar 100
```
--class参数指定执行的主类名,对应的jar文件已经上传至HDFS上。
--master参数指定使用YARN作为资源管理器,--deploy-mode参数指定执行模式为集群模式。
--num-executors参数指定申请的Executor个数。
--driver-memory参数指定Driver进程需要使用的内存大小,同样可以指定Executor进程的内存和核数。
2. 执行以上命令后,YARN资源管理器会为任务分配相应的资源,并启动作业执行。
3. 可以通过YARN界面查看作业的运行状况,包括Container的个数、启动时间、资源使用情况等。
4. 执行完成后,可以在日志文件和任务的输出目录中查看作业的输出结果。
总的来说,通过spark-submit命令提交作业到YARN非常方便,只需指定相应的参数即可实现作业的分布式部署,提高执行效率并节省时间。
### 回答3:
CDH 6.3.2 是包含了 Hadoop、Hive、Spark 等组件的大数据平台。要提交 Spark 作业到 YARN 集群,需要使用 spark-submit 命令。
首先,要确保已经安装了 CDH 6.3.2 和 Spark。然后,在本地编写好 Spark 作业代码,并上传到集群中的一个路径。
接下来,通过以下命令提交 Spark 作业:
```
spark-submit \
--class com.example.YourMainClass \
--master yarn \
--deploy-mode client \
--num-executors 4 \
--executor-memory 4g \
--executor-cores 2 \
/path/to/your/spark/job.jar \
arg1 arg2
```
其中,`--class` 参数指定主类,`--master yarn` 表示使用 YARN 集群作为 Spark 的资源管理器,`--deploy-mode client` 表示客户端模式, `--num-executors`、`--executor-memory` 和 `--executor-cores` 分别是设定 Spark 应用程序执行所需的 executor 数量、每个 executor 占用的内存和 CPU 核心数量。`/path/to/your/spark/job.jar` 是你上传的 Spark 作业包的路径,`arg1` 和 `arg2` 是你的应用程序所需要的参数。
提交成功后,Spark 应用程序就会在 YARN 上执行,输出结果会被打印到标准输出中或者存储到指定路径。
需要注意的是,提交的 Spark 作业路径和参数是相对于 YARN 集群上的路径和参数,而不是本地路径和参数。另外,如果采用了集群管理工具 Cloudera Manager 管理 CDH 6.3.2,也可以通过其提供的界面来提交 Spark 作业,更加方便快捷。
阅读全文