如何对于利用ct成像,已经提取出来的植物根系的二值化图片,图片为450张512x512的,图片为png格式,图片分辨率为0.3mm,将它堆栈成三维图像,三维骨架化以后,再去计算三维根系的总长度,利用3.8版本python,举个详细的例子
时间: 2024-02-27 14:56:54 浏览: 53
首先,您需要安装以下Python库:
- NumPy:用于处理数组数据
- OpenCV:用于图像处理
- scikit-image:用于图像处理和三维重构
- mahotas:用于三维骨架化
您可以使用以下命令安装这些库:
```
pip install numpy opencv-python scikit-image mahotas
```
然后,您可以按照以下步骤进行操作:
1. 导入必要的库
```python
import cv2
import numpy as np
from skimage import measure
import mahotas
```
2. 读取所有图片并堆叠成三维数组
```python
images = []
for i in range(1, 451):
filename = f"root_{i}.png"
img = cv2.imread(filename, 0)
images.append(img)
stacked = np.stack(images, axis=0)
```
3. 对三维图像进行阈值处理和形态学操作,以提取根系
```python
# 阈值处理
threshold = 150
binary = np.zeros_like(stacked)
binary[stacked > threshold] = 1
# 形态学操作
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (3, 3, 3))
morphed = cv2.morphologyEx(binary, cv2.MORPH_OPEN, kernel, iterations=3)
```
4. 使用scikit-image库的marching_cubes_lewiner函数将二值化图像转换为三维网格
```python
verts, faces, _, _ = measure.marching_cubes_lewiner(morphed)
```
5. 使用mahotas库的skeletonize_3d函数对三维网格进行骨架化
```python
skeleton = mahotas.skeletonize_3d(morphed)
```
6. 计算三维根系的总长度
```python
# 计算每个骨架化像素之间的欧几里得距离
distances = np.sqrt(np.sum(np.square(np.diff(np.argwhere(skeleton), axis=0)), axis=1))
# 将所有距离相加以获得总长度
total_length = np.sum(distances)
```
完整的代码示例:
```python
import cv2
import numpy as np
from skimage import measure
import mahotas
# 读取所有图片并堆叠成三维数组
images = []
for i in range(1, 451):
filename = f"root_{i}.png"
img = cv2.imread(filename, 0)
images.append(img)
stacked = np.stack(images, axis=0)
# 阈值处理
threshold = 150
binary = np.zeros_like(stacked)
binary[stacked > threshold] = 1
# 形态学操作
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (3, 3, 3))
morphed = cv2.morphologyEx(binary, cv2.MORPH_OPEN, kernel, iterations=3)
# 将二值化图像转换为三维网格
verts, faces, _, _ = measure.marching_cubes_lewiner(morphed)
# 对三维网格进行骨架化
skeleton = mahotas.skeletonize_3d(morphed)
# 计算每个骨架化像素之间的欧几里得距离
distances = np.sqrt(np.sum(np.square(np.diff(np.argwhere(skeleton), axis=0)), axis=1))
# 将所有距离相加以获得总长度
total_length = np.sum(distances)
print(f"根系的总长度为:{total_length}")
```
阅读全文