修改pytorch自带vgg19的输入通道数
时间: 2024-01-21 10:03:24 浏览: 253
基于PyTorch的VGG19神经网络的图像风格迁移学习
3星 · 编辑精心推荐
要修改PyTorch自带的VGG19的输入通道数,需要对其进行修改。具体步骤如下:
1. 从PyTorch中导入VGG19模型:
```python
import torch
import torchvision.models as models
vgg19 = models.vgg19(pretrained=True)
```
2. 查看VGG19的结构,可以看到其输入通道数为3:
```python
print(vgg19)
```
输出:
```
VGG(
(features): Sequential(
(0): Conv2d(3, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): ReLU(inplace=True)
(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(3): ReLU(inplace=True)
(4): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
(5): Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
...
```
3. 修改VGG19的输入通道数为1:
```python
import torch.nn as nn
class VGG19(nn.Module):
def __init__(self):
super(VGG19, self).__init__()
self.features = nn.Sequential(
nn.Conv2d(1, 64, kernel_size=3, stride=1, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=2, stride=2),
nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1),
...
)
self.avgpool = nn.AdaptiveAvgPool2d((7, 7))
self.classifier = nn.Sequential(
nn.Linear(512 * 7 * 7, 4096),
nn.ReLU(inplace=True),
nn.Dropout(),
nn.Linear(4096, 4096),
nn.ReLU(inplace=True),
nn.Dropout(),
nn.Linear(4096, 1000),
)
def forward(self, x):
x = self.features(x)
x = self.avgpool(x)
x = torch.flatten(x, 1)
x = self.classifier(x)
return x
```
4. 实例化修改后的VGG19模型:
```python
vgg19 = VGG19()
```
现在,你就可以使用修改后的VGG19模型来进行训练或预测了。
阅读全文