Python实现DeepAR多步预测以及误差分析和可视化代码
时间: 2024-02-22 09:56:19 浏览: 71
deepar:DeepAR的实现
4星 · 用户满意度95%
好的,以下为Python实现DeepAR多步预测以及误差分析和可视化代码:
首先,我们需要导入相关的库:
```python
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from gluonts.dataset.common import ListDataset
from gluonts.model.deepar import DeepAREstimator
from gluonts.trainer import Trainer
from gluonts.evaluation.backtest import make_evaluation_predictions
from gluonts.evaluation import Evaluator
```
接下来,我们需要准备数据。这里我们以时间序列数据为例,首先读入数据并进行预处理:
```python
# 读入数据
data = pd.read_csv('data.csv', index_col=0, parse_dates=True)
# 将数据按时间排序
data = data.sort_index()
# 创建ListDataset对象
train_data = ListDataset([{"start": data.index[0], "target": data.iloc[:-24, 0]}], freq="1H")
test_data = ListDataset([{"start": data.index[0], "target": data.iloc[-24*7:, 0]}], freq="1H")
```
然后,我们可以构建DeepAR模型,并进行训练:
```python
# 构建DeepAR模型
estimator = DeepAREstimator(freq="1H", prediction_length=24, trainer=Trainer(epochs=10))
predictor = estimator.train(training_data=train_data)
# 进行多步预测
forecast_it, ts_it = make_evaluation_predictions(test_data, predictor=predictor, num_samples=100)
forecasts = list(forecast_it)
tss = list(ts_it)
# 计算误差
evaluator = Evaluator(quantiles=(0.1, 0.5, 0.9))
agg_metrics, item_metrics = evaluator(iter(tss), iter(forecasts), num_series=len(test_data))
print(agg_metrics)
```
最后,我们可以进行可视化:
```python
# 可视化
for i in range(3):
ts_entry = tss[i]
forecast_entry = forecasts[i]
plt.figure(figsize=(12, 6))
plt.plot(ts_entry[-24*7:], label='True Value')
plt.plot(forecast_entry.mean[-24*7:], label='Predicted Value')
plt.fill_between(
forecast_entry.index[-24*7:],
forecast_entry.quantile(0.1)[-24*7:],
forecast_entry.quantile(0.9)[-24*7:],
alpha=0.2,
color='blue'
)
plt.legend()
plt.show()
```
以上就是Python实现DeepAR多步预测以及误差分析和可视化的完整代码。
阅读全文