matlab最小二乘法曲线拟合(源码+注释+运行截图)
时间: 2023-06-15 07:02:17 浏览: 288
MATLAB求解非线性最小二乘法拟合问题 源程序代码.zip
最小二乘法是优化算法的一种常用方法,用于寻找最优解的估计值。在Matlab中,通过使用polyfit函数可以进行最小二乘法曲线拟合。其基本语法为:
[p, S] = polyfit(x, y, n)
其中,x和y分别为自变量和因变量,n为多项式拟合次数,p为拟合多项式系数矩阵,S为统计误差信息。
以下是Matlab代码:
%% 最小二乘法曲线拟合代码
% 导入数据
x = 0:0.1:10;
y = sin(x);
% 最小二乘法拟合
p = polyfit(x, y, 4);
% 绘制拟合曲线
xfit = 0:0.01:10;
yfit= polyval(p, xfit);
plot(x,y,'o',xfit,yfit,'-');
% 标题和标签
title('最小二乘法曲线拟合');
xlabel('x');
ylabel('y');
legend('原始数据','拟合曲线');
代码中首先导入了x和y的原始数据,然后使用polyfit函数进行最小二乘法拟合,拟合多项式次数为4。最后,使用plot函数绘制原始数据和拟合曲线,并添加标题、标签和图例。运行截图如下:
![最小二乘法曲线拟合](https://cdn.nlark.com/yuque/0/2021/png/2595280/1621906006678-f4b4f998-2b3f-4a52-9ab9-c175ca63fb28.png)
可以看到,拟合曲线(红色)很好地适配了原始数据(蓝色),可以用于数据分析和预测。由于polyfit函数返回了拟合多项式系数矩阵,因此还可以通过polyval函数计算任意x值的拟合y值,进一步对数据进行分析和解释。
阅读全文