k均值与人工鱼群算法结合的代码实现
时间: 2023-09-11 16:12:01 浏览: 92
下面是将k均值算法与人工鱼群算法结合的Python代码实现:
```python
import random
import numpy as np
class Fish:
def __init__(self, dim, lb, ub):
self.position = np.random.uniform(lb, ub, dim)
self.lb = lb
self.ub = ub
self.fitness = float("inf")
self.delta = np.zeros(dim)
self.w = 0
class KMeansFish:
def __init__(self, k, max_iter, lb, ub, wmin, wmax, c1, c2):
self.k = k
self.max_iter = max_iter
self.lb = lb
self.ub = ub
self.wmin = wmin
self.wmax = wmax
self.c1 = c1
self.c2 = c2
def cluster(self, data):
n, dim = data.shape
fish = []
for i in range(self.k):
fish.append(Fish(dim, self.lb, self.ub))
for i in range(self.max_iter):
# 计算每个鱼的适应度
for j in range(self.k):
f = 0
for p in data:
d = np.linalg.norm(fish[j].position - p)
f += d
fish[j].fitness = f
# 更新每个鱼的位置和速度
for j in range(self.k):
for l in range(dim):
fish[j].delta[l] = fish[j].w * fish[j].delta[l] + \
self.c1 * random.random() * (fish[j].best_pos[l] - fish[j].position[l]) + \
self.c2 * random.random() * (fish[l].best_pos[l] - fish[j].position[l])
fish[j].position[l] += fish[j].delta[l]
if fish[j].position[l] < self.lb:
fish[j].position[l] = self.lb
fish[j].delta[l] = 0
elif fish[j].position[l] > self.ub:
fish[j].position[l] = self.ub
fish[j].delta[l] = 0
# 更新每个鱼的权重
wsum = 0
for j in range(self.k):
wsum += fish[j].fitness
for j in range(self.k):
fish[j].w = (self.wmax - self.wmin) * (1 - fish[j].fitness / wsum) + self.wmin
# 更新每个鱼的最佳位置
for j in range(self.k):
for p in data:
d1 = np.linalg.norm(fish[j].position - p)
d2 = np.linalg.norm(fish[j].best_pos - p)
if d1 < d2:
fish[j].best_pos = p
# 更新整个群体的最佳位置
best_pos = fish[0].best_pos
best_fitness = fish[0].fitness
for j in range(1, self.k):
if fish[j].fitness < best_fitness:
best_pos = fish[j].best_pos
best_fitness = fish[j].fitness
# 判断是否收敛
if best_fitness == 0:
break
# 聚类
labels = np.zeros(n)
for i, p in enumerate(data):
min_dist = np.linalg.norm(best_pos - p)
for j in range(1, self.k):
d = np.linalg.norm(fish[j].best_pos - p)
if d < min_dist:
min_dist = d
labels[i] = j
return labels
```
其中,`Fish`类表示一个人工鱼,包含了位置、适应度、速度、权重等属性。`KMeansFish`类表示将k均值算法和人工鱼群算法结合的聚类算法,包含了k值、最大迭代次数、位置上下界、权重下限和上限、学习因子等参数。`cluster`函数实现了将数据进行聚类的功能。
阅读全文