安卓端实现实时图像识别源代码
时间: 2023-11-26 22:06:43 浏览: 234
安卓实时图像识别可以使用TensorFlow Lite和OpenCV库来实现。以下是一个简单的示例代码,用于从相机中捕获图像并将其传递给TensorFlow Lite模型进行分类。
首先,需要在Android Studio中导入TensorFlow Lite和OpenCV库。在app/build.gradle文件中添加以下依赖项:
```
dependencies {
implementation 'org.tensorflow:tensorflow-lite:0.0.0-nightly'
implementation 'org.opencv:opencv-android:3.4.3'
}
```
然后,在MainActivity.java文件中添加以下代码:
```
import android.Manifest;
import android.content.pm.PackageManager;
import android.graphics.Bitmap;
import android.os.Bundle;
import android.util.Log;
import android.view.SurfaceView;
import android.view.WindowManager;
import androidx.annotation.NonNull;
import androidx.appcompat.app.AppCompatActivity;
import androidx.core.app.ActivityCompat;
import androidx.core.content.ContextCompat;
import org.opencv.android.BaseLoaderCallback;
import org.opencv.android.CameraBridgeViewBase;
import org.opencv.android.LoaderCallbackInterface;
import org.opencv.android.OpenCVLoader;
import org.opencv.core.CvType;
import org.opencv.core.Mat;
import org.opencv.core.Size;
import org.opencv.imgproc.Imgproc;
import org.tensorflow.lite.Interpreter;
import org.tensorflow.lite.support.image.TensorImage;
import org.tensorflow.lite.support.label.TensorLabel;
import java.io.IOException;
import java.nio.ByteBuffer;
import java.nio.ByteOrder;
import java.util.List;
import java.util.Map;
public class MainActivity extends AppCompatActivity implements CameraBridgeViewBase.CvCameraViewListener2 {
private static final String TAG = "MainActivity";
private static final int CAMERA_PERMISSION_REQUEST_CODE = 1000;
private static final int CAMERA_WIDTH = 640;
private static final int CAMERA_HEIGHT = 480;
private static final int MODEL_INPUT_SIZE = 224;
private static final String MODEL_FILE_NAME = "model.tflite";
private static final String LABELS_FILE_NAME = "labels.txt";
private CameraBridgeViewBase mCameraView;
private Mat mRgba;
private Mat mGray;
private Interpreter mInterpreter;
private List<String> mLabels;
private BaseLoaderCallback mLoaderCallback = new BaseLoaderCallback(this) {
@Override
public void onManagerConnected(int status) {
switch (status) {
case LoaderCallbackInterface.SUCCESS:
Log.i(TAG, "OpenCV loaded successfully");
mCameraView.enableView();
break;
default:
super.onManagerConnected(status);
break;
}
}
};
@Override
protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
getWindow().addFlags(WindowManager.LayoutParams.FLAG_KEEP_SCREEN_ON);
setContentView(R.layout.activity_main);
mCameraView = (CameraBridgeViewBase) findViewById(R.id.camera_view);
mCameraView.setVisibility(SurfaceView.VISIBLE);
mCameraView.setCvCameraViewListener(this);
if (ContextCompat.checkSelfPermission(this, Manifest.permission.CAMERA) !=
PackageManager.PERMISSION_GRANTED) {
ActivityCompat.requestPermissions(this, new String[]{Manifest.permission.CAMERA},
CAMERA_PERMISSION_REQUEST_CODE);
} else {
init();
}
}
private void init() {
try {
mInterpreter = new Interpreter(loadModelFile());
mLabels = Utils.loadLabels(this, LABELS_FILE_NAME);
} catch (IOException e) {
Log.e(TAG, "Error loading model or labels file", e);
}
}
private ByteBuffer loadModelFile() throws IOException {
ByteBuffer buffer = ByteBuffer.allocateDirect(4 * 1024 * 1024);
buffer.order(ByteOrder.nativeOrder());
Utils.copyInputStreamToFile(this.getAssets().open(MODEL_FILE_NAME),
Utils.createTempFile(this, MODEL_FILE_NAME));
buffer.put(Utils.readFileToByteArray(Utils.createTempFile(this, MODEL_FILE_NAME)));
return buffer;
}
@Override
public void onResume() {
super.onResume();
if (!OpenCVLoader.initDebug()) {
Log.d(TAG, "Internal OpenCV library not found. Using OpenCV Manager for initialization");
OpenCVLoader.initAsync(OpenCVLoader.OPENCV_VERSION_3_4_0, this, mLoaderCallback);
} else {
mLoaderCallback.onManagerConnected(LoaderCallbackInterface.SUCCESS);
}
}
@Override
public void onPause() {
super.onPause();
if (mCameraView != null) {
mCameraView.disableView();
}
}
@Override
public void onDestroy() {
super.onDestroy();
if (mCameraView != null) {
mCameraView.disableView();
}
}
@Override
public void onRequestPermissionsResult(int requestCode, @NonNull String[] permissions,
@NonNull int[] grantResults) {
super.onRequestPermissionsResult(requestCode, permissions, grantResults);
if (requestCode == CAMERA_PERMISSION_REQUEST_CODE) {
if (grantResults.length > 0 && grantResults[0] == PackageManager.PERMISSION_GRANTED) {
init();
} else {
Log.e(TAG, "Camera permission not granted");
}
}
}
@Override
public void onCameraViewStarted(int width, int height) {
mRgba = new Mat(height, width, CvType.CV_8UC4);
mGray = new Mat(height, width, CvType.CV_8UC1);
}
@Override
public void onCameraViewStopped() {
mRgba.release();
mGray.release();
}
@Override
public Mat onCameraFrame(CameraBridgeViewBase.CvCameraViewFrame inputFrame) {
mRgba = inputFrame.rgba();
Imgproc.cvtColor(mRgba, mGray, Imgproc.COLOR_RGBA2GRAY);
Imgproc.resize(mGray, mGray, new Size(MODEL_INPUT_SIZE, MODEL_INPUT_SIZE));
TensorImage image = new TensorImage();
image.load(mGray);
ByteBuffer buffer = image.getBuffer();
float[][] result = new float[1][mLabels.size()];
mInterpreter.run(buffer, result);
Map<String, Float> labeledProb = new TensorLabel(mLabels, result[0]).getMapWithFloatValue();
String bestMatch = "";
float bestConfidence = 0.0f;
for (Map.Entry<String, Float> entry : labeledProb.entrySet()) {
if (entry.getValue() > bestConfidence) {
bestMatch = entry.getKey();
bestConfidence = entry.getValue();
}
}
Imgproc.putText(mRgba, bestMatch, new org.opencv.core.Point(10, 100),
Imgproc.FONT_HERSHEY_SIMPLEX, 1.0, new org.opencv.core.Scalar(255, 255, 255), 2);
return mRgba;
}
}
```
该代码使用OpenCV库从相机中捕获图像,并将其转换为TensorFlow Lite模型的输入格式。模型返回一个包含每个类别概率的数组,然后在标签列表中寻找最高概率的类别,并在相机预览中显示它。
请注意,此示例仅适用于单个物体的分类。如果要检测多个物体,请考虑使用更高级的算法,如SSD或YOLO。
阅读全文