pd.get_dummies如何设置列名
时间: 2024-03-21 11:40:45 浏览: 88
在 pd.get_dummies 函数中,可以通过参数 prefix 和 columns 来设置生成的哑变量列名。
prefix 参数用于添加一个前缀,可以是字符串或者字符串列表。如果列名本身已经以该前缀开头,则不会再添加该前缀。
columns 参数用于指定需要生成哑变量的列名列表。如果不指定该参数,则会对所有非数值列进行哑变量编码。
下面是一个示例代码,通过设置 prefix 和 columns 参数来生成指定列名的哑变量:
```
import pandas as pd
df = pd.DataFrame({'A': ['a', 'b', 'c'], 'B': ['x', 'y', 'z']})
dummies = pd.get_dummies(df, prefix=['col1', 'col2'], columns=['A', 'B'])
print(dummies.columns)
```
输出结果如下:
```
Index(['col1_a', 'col1_b', 'col1_c', 'col2_x', 'col2_y', 'col2_z'], dtype='object')
```
可以看到,生成的列名以指定的前缀开头,并且只包含指定的列名。
相关问题
pd.get_dummies参数
pd.get_dummies() 是 pandas 库中的一个函数,用于将分类变量转换为哑变量(dummy variable)或指示变量(indicator variable)。
其参数如下:
- data:要进行处理的数据,可以是 Series、DataFrame 或者 ndarray 类型。
- prefix:哑变量列名的前缀,字符串类型。
- prefix_sep:用于连接前缀和原始列名的分隔符,默认为 '_'。
- columns:指定要进行哑变量编码的列,默认为所有列。
- sparse:是否使用稀疏矩阵表示。默认为 False,即不使用稀疏矩阵。
- drop_first:是否删除第一列,即每个分类变量的第一个值所对应的哑变量列。默认为 False,即不删除第一列。
例如:
```python
import pandas as pd
df = pd.DataFrame({'A': ['a', 'b', 'c'], 'B': ['x', 'y', 'z']})
dummies = pd.get_dummies(df)
print(dummies)
```
输出结果为:
```
A_a A_b A_c B_x B_y B_z
0 1 0 0 1 0 0
1 0 1 0 0 1 0
2 0 0 1 0 0 1
```
这里将 DataFrame 中的两个分类变量 A 和 B 转换为哑变量,列名前缀默认为变量名。
pd.get_dummies用法
`pd.get_dummies()` 是 Pandas 库中的一个函数,用于将分类变量转换为哑变量(dummy variable),也称为指示变量(indicator variable)。
函数的语法为:
```python
pd.get_dummies(data, prefix=None, prefix_sep='_', dummy_na=False, columns=None, sparse=False, drop_first=False, dtype=None)
```
其中,参数含义如下:
- `data`:要进行哑变量转换的 DataFrame 或 Series。
- `prefix`:新列名的前缀。
- `prefix_sep`:新列名前缀与分类名称之间的分隔符。
- `dummy_na`:是否为缺失值创建一个哑变量列。
- `columns`:要进行哑变量转换的列名列表,如果未指定,则将所有分类变量转换为哑变量。
- `sparse`:是否使用稀疏矩阵表示哑变量。
- `drop_first`:是否删除每个分类变量的第一个级别以避免共线性。
- `dtype`:哑变量的数据类型。
举个例子,如果有如下一个 DataFrame:
```python
import pandas as pd
df = pd.DataFrame({'A': ['x', 'y', 'z', 'x'], 'B': ['p', 'q', 'r', 'q']})
print(df)
```
输出:
```
A B
0 x p
1 y q
2 z r
3 x q
```
使用 `pd.get_dummies()` 将分类变量转换为哑变量:
```python
dummies = pd.get_dummies(df)
print(dummies)
```
输出:
```
A_x A_y A_z B_p B_q B_r
0 1 0 0 1 0 0
1 0 1 0 0 1 0
2 0 0 1 0 0 1
3 1 0 0 0 1 0
```
可以看到,`pd.get_dummies()` 将原始的 DataFrame 按照每个分类变量的取值转换为了哑变量。新列名的前缀为分类变量的名称,前缀和分类名称之间的分隔符默认为下划线。如果分类变量取值中存在缺失值,可以通过设置 `dummy_na=True` 创建一个哑变量列来表示缺失值。如果想要对指定列进行哑变量转换,可以通过设置 `columns` 参数来实现。如果想要使用稀疏矩阵表示哑变量,可以将 `sparse=True`。如果想要删除每个分类变量的第一个级别以避免共线性,可以将 `drop_first=True`。
阅读全文