帮我写一个基于Vision Transformer将一个.png图片集进行分类的代码
时间: 2023-03-30 08:01:59 浏览: 253
好的,我可以回答这个问题。以下是一个基于Vision Transformer的图片分类代码示例:
```python
import torch
import torch.nn as nn
import torchvision.transforms as transforms
from PIL import Image
# 定义Vision Transformer模型
class VisionTransformer(nn.Module):
def __init__(self, num_classes=10, dim=512, depth=6, heads=8, mlp_dim=2048):
super().__init__()
self.patch_size = 16
self.num_classes = num_classes
self.pos_embedding = nn.Parameter(torch.zeros(1, (224 // self.patch_size) ** 2 + 1, dim))
self.patch_embedding = nn.Conv2d(3, dim, kernel_size=self.patch_size, stride=self.patch_size)
self.transformer = nn.TransformerEncoder(nn.TransformerEncoderLayer(d_model=dim, nhead=heads, dim_feedforward=mlp_dim), num_layers=depth)
self.fc = nn.Linear(dim, num_classes)
def forward(self, x):
x = self.patch_embedding(x).flatten(2).transpose(1, 2)
x = torch.cat([self.pos_embedding[:, :1, :].expand(-1, x.size(1), -1), x], dim=1)
x = self.transformer(x)
x = x.mean(dim=1)
x = self.fc(x)
return x
# 加载模型和预训练权重
model = VisionTransformer()
model.load_state_dict(torch.load('vision_transformer.pth'))
# 定义图片预处理
transform = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(mean=[.485, .456, .406], std=[.229, .224, .225])
])
# 加载图片并进行预测
img = Image.open('test.png')
img = transform(img)
img = img.unsqueeze()
output = model(img)
pred = torch.argmax(output, dim=1).item()
print('预测结果:', pred)
```
这个代码可以将一个.png图片集进行分类,其中使用了Vision Transformer模型和预训练权重。你可以根据自己的需要修改代码中的参数和预处理方式。
阅读全文