设MCS51单片机的晶振fosc=6MHz,要求T0定时150微秒,请计算定时方式2时的定时初值。

时间: 2024-05-31 19:07:14 浏览: 21
定时方式2的计算公式为:TH0 = 256 - (T0计数器初值) 由于定时器0的时钟源为晶振,晶振频率为6MHz,所以每个机器周期为1/6MHz=0.1667微秒。 要求定时150微秒,即需要计数150/0.1667≈900个机器周期。 根据计算公式,可得TH0 = 256 - 900 ≈ -644。 但是,TH0是一个8位寄存器,不能存储负数,因此需要进行补码转换。将-644的绝对值转换为二进制数为01000011,再取反加一得到补码为10111101,即BDH。 因此,定时方式2的定时初值为BDH。
相关问题

设MCS51单片机的晶振fosc=12MHz,请计算采用定时方式2时的最大定时时间。

MCS51单片机的定时方式2是通过16位计数器实现的,计数器的最大值为65535。定时时间的计算公式为: t = 65536 - (65536 - T) * fosc / 12MHz 其中,T为计数器初值,fosc为晶振频率,12MHz为晶振频率。 将T设为0,则最大定时时间t为: t = 65536 * 1 / (12MHz / 2) ≈ 5.46ms 因此,采用定时方式2时的最大定时时间为5.46ms。

设MCS51单片机的晶振fosc=6MHz,试对定时器T1初始化,使之工作在模式2,产生200微秒的定时,并用查询T1溢出标志位的方法,控制P1.0输出周期为2ms的方波。 (1)初值计算

定时器T1工作在模式2下,计算计数器的初值需要使用以下公式: 初值 = 65536 - (定时时间 / Tclk) 其中,定时时间为所需的定时时间(单位为秒),Tclk为定时器T1的时钟周期,等于晶振频率fosc除以12。 将200微秒转化为秒,得到定时时间为0.0002秒。将fosc除以12得到Tclk为500kHz。 代入公式得到初值: 初值 = 65536 - (0.0002 / 0.0000020833) = 54560 因为初值需要用两个8位寄存器TH1和TL1组成,所以需要将54560转化为16进制,得到D550H。 (2)控制P1.0输出周期为2ms的方波 通过查询T1溢出标志位,可以判断定时器T1是否达到设定的定时时间。当T1溢出时,TH1和TL1会自动重装初值,计数器重新开始计数。 根据题目要求,控制P1.0输出周期为2ms的方波,即需要每隔2ms将P1.0的输出状态取反一次。因此,可以在T1溢出时,在中断服务程序中将P1.0状态取反。 具体实现代码如下: #include <reg51.h> #define FOSC 6000000L // 晶振频率 #define T1MS (65536-FOSC/12/1000) // 1ms定时器初值 #define T200US (65536-FOSC/12/5000) // 200us定时器初值 sbit LED = P1^0; // 定义LED控制引脚 void T1_Init(void) { TMOD |= 0x10; // 设置T1为模式2 TH1 = T200US / 256; // 设置T1初值 TL1 = T200US % 256; ET1 = 1; // 允许T1中断 TR1 = 1; // 启动T1 } void T1_ISR(void) interrupt 3 { TH1 = T200US / 256; // 重新设置T1初值 TL1 = T200US % 256; LED = ~LED; // 取反LED状态 } void main() { T1_Init(); // 初始化定时器T1 EA = 1; // 开启总中断 while(1); // 程序循环 }

相关推荐

最新推荐

recommend-type

基于MCS-51单片机的断相与相序保护系统的设计

基于MCS-51单片机的断相与相序保护系统的设计 本文介绍了一种简单实用的数字式断相与相序保护技术的原理,给出了基于MCS—51单片机的断相与相序保护数字控制系统的硬件电路及简单软件介绍,实现了三相交流控制系统...
recommend-type

MCS-51单片机汇编指令详解

本指令是要在ROM的一个地址单元中找出数据,显然必须知道这个单元的地址,这个单元的地址是这样确定的:在执行本指令立脚点DPTR中有一个数,A中有一个数,执行指令时,将A和DPTR中的数加起为,就成为要查找的单元的...
recommend-type

MCS-51单片机期末试题2及答案

4. 若MCS-51单片机采用12MHz的晶振,它的机器周期为1μm,ALE引脚输出正脉冲频率为1MHz。 知识点:MCS-51单片机的时钟机制和机器周期的计算。 5. 要使MCS-51单片机从片内的地址0000H开始执行程序。那么EA应为低...
recommend-type

MCS-51单片机应用设计课后答案.doc

6. MCS-51系列单片机与80C51系列单片机的异同点:共同点为它们的指令系统相互兼容。不同点在于MCS-51是基本型,而80C51采用CMOS工艺,功耗很低,有两种掉电工作方式。 7. 8051与8751的区别:内部程序存储器的类型...
recommend-type

基于AT89C51单片机简易计算器的设计.doc

基于AT89C51单片机简易计算器的设计 本设计是一个简单的计算器,基于AT89C51单片机,使用C语言编程,PROTUES仿真,可以进行四则运算(加、减、乘、除),并在LED上显示相应的结果。 一、设计目的 单片机的出现是...
recommend-type

京瓷TASKalfa系列维修手册:安全与操作指南

"该资源是一份针对京瓷TASKalfa系列多款型号打印机的维修手册,包括TASKalfa 2020/2021/2057,TASKalfa 2220/2221,TASKalfa 2320/2321/2358,以及DP-480,DU-480,PF-480等设备。手册标注为机密,仅供授权的京瓷工程师使用,强调不得泄露内容。手册内包含了重要的安全注意事项,提醒维修人员在处理电池时要防止爆炸风险,并且应按照当地法规处理废旧电池。此外,手册还详细区分了不同型号产品的打印速度,如TASKalfa 2020/2021/2057的打印速度为20张/分钟,其他型号则分别对应不同的打印速度。手册还包括修订记录,以确保信息的最新和准确性。" 本文档详尽阐述了京瓷TASKalfa系列多功能一体机的维修指南,适用于多种型号,包括速度各异的打印设备。手册中的安全警告部分尤为重要,旨在保护维修人员、用户以及设备的安全。维修人员在操作前必须熟知这些警告,以避免潜在的危险,如不当更换电池可能导致的爆炸风险。同时,手册还强调了废旧电池的合法和安全处理方法,提醒维修人员遵守地方固体废弃物法规。 手册的结构清晰,有专门的修订记录,这表明手册会随着设备的更新和技术的改进不断得到完善。维修人员可以依靠这份手册获取最新的维修信息和操作指南,确保设备的正常运行和维护。 此外,手册中对不同型号的打印速度进行了明确的区分,这对于诊断问题和优化设备性能至关重要。例如,TASKalfa 2020/2021/2057系列的打印速度为20张/分钟,而TASKalfa 2220/2221和2320/2321/2358系列则分别具有稍快的打印速率。这些信息对于识别设备性能差异和优化工作流程非常有用。 总体而言,这份维修手册是京瓷TASKalfa系列设备维修保养的重要参考资料,不仅提供了详细的操作指导,还强调了安全性和合规性,对于授权的维修工程师来说是不可或缺的工具。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【进阶】入侵检测系统简介

![【进阶】入侵检测系统简介](http://www.csreviews.cn/wp-content/uploads/2020/04/ce5d97858653b8f239734eb28ae43f8.png) # 1. 入侵检测系统概述** 入侵检测系统(IDS)是一种网络安全工具,用于检测和预防未经授权的访问、滥用、异常或违反安全策略的行为。IDS通过监控网络流量、系统日志和系统活动来识别潜在的威胁,并向管理员发出警报。 IDS可以分为两大类:基于网络的IDS(NIDS)和基于主机的IDS(HIDS)。NIDS监控网络流量,而HIDS监控单个主机的活动。IDS通常使用签名检测、异常检测和行
recommend-type

轨道障碍物智能识别系统开发

轨道障碍物智能识别系统是一种结合了计算机视觉、人工智能和机器学习技术的系统,主要用于监控和管理铁路、航空或航天器的运行安全。它的主要任务是实时检测和分析轨道上的潜在障碍物,如行人、车辆、物体碎片等,以防止这些障碍物对飞行或行驶路径造成威胁。 开发这样的系统主要包括以下几个步骤: 1. **数据收集**:使用高分辨率摄像头、雷达或激光雷达等设备获取轨道周围的实时视频或数据。 2. **图像处理**:对收集到的图像进行预处理,包括去噪、增强和分割,以便更好地提取有用信息。 3. **特征提取**:利用深度学习模型(如卷积神经网络)提取障碍物的特征,如形状、颜色和运动模式。 4. **目标
recommend-type

小波变换在视频压缩中的应用

"多媒体通信技术视频信息压缩与处理(共17张PPT).pptx" 多媒体通信技术涉及的关键领域之一是视频信息压缩与处理,这在现代数字化社会中至关重要,尤其是在传输和存储大量视频数据时。本资料通过17张PPT详细介绍了这一主题,特别是聚焦于小波变换编码和分形编码两种新型的图像压缩技术。 4.5.1 小波变换编码是针对宽带图像数据压缩的一种高效方法。与离散余弦变换(DCT)相比,小波变换能够更好地适应具有复杂结构和高频细节的图像。DCT对于窄带图像信号效果良好,其变换系数主要集中在低频部分,但对于宽带图像,DCT的系数矩阵中的非零系数分布较广,压缩效率相对较低。小波变换则允许在频率上自由伸缩,能够更精确地捕捉图像的局部特征,因此在压缩宽带图像时表现出更高的效率。 小波变换与傅里叶变换有本质的区别。傅里叶变换依赖于一组固定频率的正弦波来表示信号,而小波分析则是通过母小波的不同移位和缩放来表示信号,这种方法对非平稳和局部特征的信号描述更为精确。小波变换的优势在于同时提供了时间和频率域的局部信息,而傅里叶变换只提供频率域信息,却丢失了时间信息的局部化。 在实际应用中,小波变换常常采用八带分解等子带编码方法,将低频部分细化,高频部分则根据需要进行不同程度的分解,以此达到理想的压缩效果。通过改变小波的平移和缩放,可以获取不同分辨率的图像,从而实现按需的图像质量与压缩率的平衡。 4.5.2 分形编码是另一种有效的图像压缩技术,特别适用于处理不规则和自相似的图像特征。分形理论源自自然界的复杂形态,如山脉、云彩和生物组织,它们在不同尺度上表现出相似的结构。通过分形编码,可以将这些复杂的形状和纹理用较少的数据来表示,从而实现高压缩比。分形编码利用了图像中的分形特性,将其转化为分形块,然后进行编码,这在处理具有丰富细节和不规则边缘的图像时尤其有效。 小波变换和分形编码都是多媒体通信技术中视频信息压缩的重要手段,它们分别以不同的方式处理图像数据,旨在减少存储和传输的需求,同时保持图像的质量。这两种技术在现代图像处理、视频编码标准(如JPEG2000)中都有广泛应用。