% Initialization r = L*rand(n,3); % Random positions v = randn(n,3); % Random velocities v = v - repmat(mean(v),n,1); % Zero center of mass velocity v = v*sqrt(3*T/m); % Scale to desired temperature dt = 0.001; % Time step每句什么意思
时间: 2024-02-19 09:00:40 浏览: 61
这是一段 MATLAB 代码,表示在模拟分子动力学过程中进行初始化。其中:
- r = L*rand(n,3); 表示生成一个n行3列的随机矩阵,表示粒子的随机位置,位置范围在一个边长为L的正方体内。
- v = randn(n,3); 表示生成一个n行3列的高斯随机矩阵,表示粒子的随机速度。
- v = v - repmat(mean(v),n,1); 表示将速度减去质心速度,保证系统的总动量为零。
- v = v*sqrt(3*T/m); 表示将速度按一定比例缩放到所需温度,保证系统的温度为所设置的温度T。
- dt = 0.001; 表示设置时间步长为0.001。
相关问题
function [OP_Cost,GOP]=MTOA(Fcn_Name,Par_Interval,No_GTs,No_LTs,RM,Rm,Max_Itr,Beta,Lambda,Theta,Graphic_on) % initialization %=============================================================== [Dim,m]=size(Par_Interval); OP_Cost=zeros(1,Max_Itr); LP=zeros(Dim,No_GTs); LP_Cost=ones(1,No_GTs)*inf; GTs=rand(Dim,No_GTs).*repmat(Par_Interval(:,2)-Par_Interval(:,1),1,No_GTs)+repmat(Par_Interval(:,1),1,No_GTs); GTs_Cost=Ev_Fcn(GTs,Fcn_Name); [Gts_Sorted,RKs]=sort(GTs_Cost); GOP=GTs(:,RKs(1)); GOP_Cost=Gts_Sorted(1); nop=No_GTs; OP_Cost(1)=GOP_Cost; 把这段MATLAB代码转换为python代码
Here is the Python code equivalent of the given MATLAB code:
import numpy as np
def MTOA(Fcn_Name, Par_Interval, No_GTs, No_LTs, RM, Rm, Max_Itr, Beta, Lambda, Theta, Graphic_on):
# initialization
# ===============================================================
Dim, m = Par_Interval.shape
OP_Cost = np.zeros((1, Max_Itr))
LP = np.zeros((Dim, No_GTs))
LP_Cost = np.ones((1, No_GTs)) * np.inf
GTs = np.random.rand(Dim, No_GTs) * np.tile(Par_Interval[:, 1] - Par_Interval[:, 0], (No_GTs, 1)).T + np.tile(Par_Interval[:, 0], (No_GTs, 1)).T
GTs_Cost = Ev_Fcn(GTs, Fcn_Name)
Gts_Sorted, RKs = np.sort(GTs_Cost), np.argsort(GTs_Cost)
GOP, GOP_Cost, nop = GTs[:, RKs[0]], Gts_Sorted[0], No_GTs
OP_Cost[0] = GOP_Cost
# rest of the code goes here
用matlab中s-function的传递函数T/(s^2+D*s+N),定义变量C1,C2,R1,R2,R3,其中T=R1*R2/(R1+R2),D=R2*R3/(R2*R3),N=R1
在MATLAB中,可以使用S函数块来实现自定义传递函数的模拟。传递函数T/(s^2 D*s N)可以通过如下代码定义:
```matlab
function [sys,x0,str,ts] = my_sfun(t,x,u,flag,C1,C2,R1,R2,R3)
switch flag
case 0 % initialization
sizes = simsizes;
sizes.NumContStates = 0;
sizes.NumDiscStates = 0;
sizes.NumOutputs = 1;
sizes.NumInputs = 1;
sizes.DirFeedthrough = 1;
sizes.NumSampleTimes = 1;
sys = simsizes(sizes);
x0 = [];
str = [];
ts = [0 0];
case 1 % derivatives
sys = [];
case 3 % outputs
s = tf('s');
T = R1*R2/(R1+R2);
D = R2*R3/(R2+R3);
N = R1;
G = T/(s^2*D*s*N);
y = lsim(G,u,t);
sys = y;
case {2, 4, 9} % unused flags
sys = [];
otherwise
error(['Unhandled flag = ',num2str(flag)]);
end
```
在这个代码中,我们使用了MATLAB的Control System Toolbox中的tf函数来定义传递函数G。在输出函数中,我们使用了lsim函数来计算输入信号u的响应,并将其作为输出sys返回。其中,输入参数t和u分别表示当前时刻和输入信号,flag表示当前调用S函数块的状态,C1、C2、R1、R2和R3是在S函数块中定义的变量,可以在S函数块的参数设置中进行设置。
需要注意的是,S函数块必须保存为.m文件,并且在Simulink中使用时,需要将其添加到S函数库中。在模拟中,可以将S函数块作为普通的Simulink模块使用,将输入信号连接到S函数块的输入端口,将输出信号连接到其他模块的输入端口。
阅读全文
相关推荐















