拉格朗日插值法python代码
时间: 2023-06-11 21:07:45 浏览: 134
以下是使用Python实现拉格朗日插值法的示例代码:
```python
import numpy as np
def lagrange_interpolation(x, y, z):
n = len(x)
result = 0.0
for i in range(n):
p = 1.0
for j in range(n):
if j != i:
p *= (z - x[j]) / (x[i] - x[j])
result += y[i] * p
return result
# 示例
x = np.array([1, 2, 4])
y = np.array([3, 5, 1])
z = 3
result = lagrange_interpolation(x, y, z)
print(result)
```
在上面的示例代码中,输入参数 `x` 和 `y` 分别是已知数据点的横坐标和纵坐标数组,`z` 是待求插值的自变量值。函数 `lagrange_interpolation` 返回根据拉格朗日插值法计算出的对应的因变量值。在示例中,输入的数据点为 `(1, 3)`、`(2, 5)`、`(4, 1)`,待求的插值点为 `z=3`,计算出的结果为 `3.66666667`。
相关问题
拉格朗日插值法Python代码
拉格朗日插值法是一种数值分析方法,用于通过给定的数据点构造一条经过所有数据点的多项式。下面是简单的Python代码实现:
```python
def lagrange_interpolation(x_data, y_data, x_query):
n = len(x_data)
l_values = [y_data[i] * product((x_query - x_data[j]) for j in range(n) if j != i) / product(x_data[j] - x_data[i] for j in range(n) if j != i) for i in range(n)]
return sum(l_values)
# 示例
x_data = [0, 1, 2, 3]
y_data = [1, 4, 9, 16]
x_query = 2.5
result = lagrange_interpolation(x_data, y_data, x_query)
print(f"插值后的值 at {x_query} 是: {result}")
拉格朗日插值法python代码实现
拉格朗日插值法的Python代码实现可以分为几个步骤。首先,我们需要导入所需的库,例如matplotlib、numpy、pandas和sympy。然后,我们需要定义一个函数来实现拉格朗日插值。在这个函数中,我们需要传入x值和y值的列表作为参数。接下来,我们需要通过遍历x值的列表来计算拉格朗日插值的多项式。具体来说,我们需要使用X和Y两个变量来计算每个项的值,并将它们相乘。然后,我们将这些项相加得到最终的多项式。最后,我们可以使用plot函数将插值多项式绘制成图形。
以下是一个示例的Python代码实现:
```python
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
from sympy import expand
from sympy.abc import x
def lagrange(xx, y):
l = len(y)
l_n = 0
for k in range(l):
xxx = xx.copy()
x_k = xxx[k]
xxx.pop(k)
l_k = 1
for i in range(len(xxx)):
l_k *= (x - xxx[i]) / (x_k -xxx[i])
l_n += y[k * l_k
return expand(l_n)
# 读取数据
data = pd.read_csv('data.csv')
# 获取x和y的值
xx = data['x']
y = data['y']
# 计算插值多项式
lagrange_interpolation_polynomial = lagrange(xx, y)
# 打印插值多项式
print("拉格朗日插值多项式为:", lagrange_interpolation_polynomial)
# 生成插值函数的曲线
x2 = np.linspace(-1, 4, 100)
y1 = []
for i in range(len(x2)):
y1.append(lagrange_interpolation_polynomial.subs(x, x2[i]))
# 绘制散点图和插值函数曲线
plt.figure(figsize=(8, 4))
plt.scatter(xx, y, c='red')
plt.plot(x2, y1, '-')
plt.show()
```
这是一个示例代码,其中包含了数据读取、插值多项式的计算和绘制图形等步骤。你可以根据自己的需求和数据进行相应的调整和修改。<span class="em">1</span><span class="em">2</span><span class="em">3</span>
#### 引用[.reference_title]
- *1* [Python实现的拉格朗日插值法示例](https://download.csdn.net/download/weixin_38717156/13770742)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 33.333333333333336%"]
- *2* [拉格朗日插值法——python代码实现](https://blog.csdn.net/m0_72662900/article/details/128278422)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 33.333333333333336%"]
- *3* [拉格朗日插值法的Python程序](https://blog.csdn.net/weixin_48615832/article/details/115582544)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 33.333333333333336%"]
[ .reference_list ]
阅读全文