epoch的loss和acc如何绘制

时间: 2023-06-05 14:47:16 浏览: 77
epoch是指训练模型时的迭代次数。loss和acc是模型训练的两个重要指标。loss(损失)反映模型的预测结果与真实标签之间的差异程度,它的值越小说明模型的预测越接近实际值;而acc(准确率)则是指模型的预测结果与真实标签相符的比例,它的值越高则说明模型的预测效果越好。通过绘制loss和acc的变化曲线,可以直观地了解模型在训练过程中的表现情况,帮助我们优化训练过程和提高模型预测效果。
相关问题

cifar100图像分类实验训练集和测试集loss和acc曲线绘制源码

以下是使用PyTorch绘制cifar100图像分类实验训练集和测试集loss和acc曲线的示例代码: ```python import torch import torch.nn as nn import torch.optim as optim import torchvision import torchvision.transforms as transforms import matplotlib.pyplot as plt # 定义超参数 batch_size = 128 lr = 0.1 momentum = 0.9 weight_decay = 1e-4 epochs = 50 # 加载数据集 train_transform = transforms.Compose([ transforms.RandomCrop(32, padding=4), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize((0.5071, 0.4867, 0.4408), (0.2675, 0.2565, 0.2761)) ]) test_transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.5071, 0.4867, 0.4408), (0.2675, 0.2565, 0.2761)) ]) train_set = torchvision.datasets.CIFAR100(root='./data', train=True, download=True, transform=train_transform) train_loader = torch.utils.data.DataLoader(train_set, batch_size=batch_size, shuffle=True, num_workers=2) test_set = torchvision.datasets.CIFAR100(root='./data', train=False, download=True, transform=test_transform) test_loader = torch.utils.data.DataLoader(test_set, batch_size=batch_size, shuffle=False, num_workers=2) # 定义模型 class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(3, 64, 3, padding=1) self.bn1 = nn.BatchNorm2d(64) self.relu1 = nn.ReLU(inplace=True) self.conv2 = nn.Conv2d(64, 128, 3, padding=1) self.bn2 = nn.BatchNorm2d(128) self.relu2 = nn.ReLU(inplace=True) self.conv3 = nn.Conv2d(128, 256, 3, padding=1) self.bn3 = nn.BatchNorm2d(256) self.relu3 = nn.ReLU(inplace=True) self.fc = nn.Linear(256 * 8 * 8, 100) def forward(self, x): x = self.conv1(x) x = self.bn1(x) x = self.relu1(x) x = self.conv2(x) x = self.bn2(x) x = self.relu2(x) x = self.conv3(x) x = self.bn3(x) x = self.relu3(x) x = x.view(-1, 256 * 8 * 8) x = self.fc(x) return x # 定义损失函数和优化器 net = Net() criterion = nn.CrossEntropyLoss() optimizer = optim.SGD(net.parameters(), lr=lr, momentum=momentum, weight_decay=weight_decay) # 训练模型 train_loss_list = [] train_acc_list = [] test_loss_list = [] test_acc_list = [] for epoch in range(epochs): train_loss = 0 train_acc = 0 net.train() for i, (inputs, labels) in enumerate(train_loader): optimizer.zero_grad() outputs = net(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() train_loss += loss.item() _, predicted = torch.max(outputs.data, 1) train_acc += (predicted == labels).sum().item() train_loss /= len(train_loader.dataset) train_acc /= len(train_loader.dataset) train_loss_list.append(train_loss) train_acc_list.append(train_acc) test_loss = 0 test_acc = 0 net.eval() with torch.no_grad(): for inputs, labels in test_loader: outputs = net(inputs) loss = criterion(outputs, labels) test_loss += loss.item() _, predicted = torch.max(outputs.data, 1) test_acc += (predicted == labels).sum().item() test_loss /= len(test_loader.dataset) test_acc /= len(test_loader.dataset) test_loss_list.append(test_loss) test_acc_list.append(test_acc) print('Epoch [%d/%d], Train Loss: %.4f, Train Acc: %.4f, Test Loss: %.4f, Test Acc: %.4f' % (epoch+1, epochs, train_loss, train_acc, test_loss, test_acc)) # 绘制loss和acc曲线 plt.plot(range(epochs), train_loss_list, label='train') plt.plot(range(epochs), test_loss_list, label='test') plt.xlabel('Epoch') plt.ylabel('Loss') plt.legend() plt.show() plt.plot(range(epochs), train_acc_list, label='train') plt.plot(range(epochs), test_acc_list, label='test') plt.xlabel('Epoch') plt.ylabel('Accuracy') plt.legend() plt.show() ``` 运行该代码,即可绘制出cifar100图像分类实验训练集和测试集loss和acc曲线。

pytorch画acc和loss曲线图

可以使用 matplotlib 库在 PyTorch 中绘制 acc 和 loss 曲线图。首先需要在训练过程中记录 acc 和 loss 的数值,然后使用 matplotlib 的 plot 函数绘制曲线图即可。代码示例如下: ```python import matplotlib.pyplot as plt # 在训练过程中记录 acc 和 loss train_acc = [] train_loss = [] # ... train_acc.append(acc) train_loss.append(loss) # 绘制 acc 曲线图 plt.plot(train_acc) plt.title('Accuracy') plt.xlabel('Epoch') plt.ylabel('Accuracy') plt.show() # 绘制 loss 曲线图 plt.plot(train_loss) plt.title('Loss') plt.xlabel('Epoch') plt.ylabel('Loss') plt.show() ``` 请确保在训练过程中记录 acc 和 loss,并在绘图时使用相应的数值。

相关推荐

好的,训练神经网络可以使用许多深度学习框架,如TensorFlow、PyTorch、Keras等。这里我将提供一个使用PyTorch训练神经网络并记录每个epoch准确率的示例代码。 import torch import torchvision import torchvision.transforms as transforms # 定义转换器 transform = transforms.Compose( [transforms.ToTensor(), transforms.Normalize((0.5,), (0.5,))]) # 加载训练数据集 trainset = torchvision.datasets.MNIST(root='./data', train=True, download=True, transform=transform) trainloader = torch.utils.data.DataLoader(trainset, batch_size=64, shuffle=True, num_workers=2) # 定义模型 class Net(torch.nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = torch.nn.Conv2d(1, 6, 5) self.pool = torch.nn.MaxPool2d(2, 2) self.conv2 = torch.nn.Conv2d(6, 16, 5) self.fc1 = torch.nn.Linear(16 * 4 * 4, 120) self.fc2 = torch.nn.Linear(120, 84) self.fc3 = torch.nn.Linear(84, 10) def forward(self, x): x = self.pool(torch.nn.functional.relu(self.conv1(x))) x = self.pool(torch.nn.functional.relu(self.conv2(x))) x = x.view(-1, 16 * 4 * 4) x = torch.nn.functional.relu(self.fc1(x)) x = torch.nn.functional.relu(self.fc2(x)) x = self.fc3(x) return x # 定义模型、损失函数和优化器 net = Net() criterion = torch.nn.CrossEntropyLoss() optimizer = torch.optim.SGD(net.parameters(), lr=0.001, momentum=0.9) # 训练模型 for epoch in range(500): running_loss = 0.0 correct = 0 total = 0 for i, data in enumerate(trainloader, 0): inputs, labels = data optimizer.zero_grad() outputs = net(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() running_loss += loss.item() _, predicted = torch.max(outputs.data, 1) total += labels.size(0) correct += (predicted == labels).sum().item() acc = 100 * correct / total print('Epoch %d, Loss: %.3f, Accuracy: %.3f%%' % (epoch + 1, running_loss / len(trainloader), acc)) 在每个epoch的循环中,我们通过计算准确率来记录模型的性能,并在每个epoch结束时打印出来。如果您想将每个epoch的准确率记录到一个文件中,可以使用Python的文件操作来实现。
在在这在这段在这段代码在这段代码中在这段代码中,在这段代码中,定义在这段代码中,定义了在这段代码中,定义了一个在这段代码中,定义了一个名在这段代码中,定义了一个名为在这段代码中,定义了一个名为fin在这段代码中,定义了一个名为finet在这段代码中,定义了一个名为finetune在这段代码中,定义了一个名为finetune的在这段代码中,定义了一个名为finetune的函数在这段代码中,定义了一个名为finetune的函数,在这段代码中,定义了一个名为finetune的函数,该在这段代码中,定义了一个名为finetune的函数,该函数在这段代码中,定义了一个名为finetune的函数,该函数接在这段代码中,定义了一个名为finetune的函数,该函数接受在这段代码中,定义了一个名为finetune的函数,该函数接受三在这段代码中,定义了一个名为finetune的函数,该函数接受三个在这段代码中,定义了一个名为finetune的函数,该函数接受三个参数在这段代码中,定义了一个名为finetune的函数,该函数接受三个参数:在这段代码中,定义了一个名为finetune的函数,该函数接受三个参数:model在这段代码中,定义了一个名为finetune的函数,该函数接受三个参数:model、在这段代码中,定义了一个名为finetune的函数,该函数接受三个参数:model、datal在这段代码中,定义了一个名为finetune的函数,该函数接受三个参数:model、dataload在这段代码中,定义了一个名为finetune的函数,该函数接受三个参数:model、dataloaders在这段代码中,定义了一个名为finetune的函数,该函数接受三个参数:model、dataloaders和在这段代码中,定义了一个名为finetune的函数,该函数接受三个参数:model、dataloaders和optimizer在这段代码中,定义了一个名为finetune的函数,该函数接受三个参数:model、dataloaders和optimizer。在这段代码中,定义了一个名为finetune的函数,该函数接受三个参数:model、dataloaders和optimizer。该在这段代码中,定义了一个名为finetune的函数,该函数接受三个参数:model、dataloaders和optimizer。该函数在这段代码中,定义了一个名为finetune的函数,该函数接受三个参数:model、dataloaders和optimizer。该函数利在这段代码中,定义了一个名为finetune的函数,该函数接受三个参数:model、dataloaders和optimizer。该函数利用在这段代码中,定义了一个名为finetune的函数,该函数接受三个参数:model、dataloaders和optimizer。该函数利用交在这段代码中,定义了一个名为finetune的函数,该函数接受三个参数:model、dataloaders和optimizer。该函数利用交叉在这段代码中,定义了一个名为finetune的函数,该函数接受三个参数:model、dataloaders和optimizer。该函数利用交叉熵在这段代码中,定义了一个名为finetune的函数,该函数接受三个参数:model、dataloaders和optimizer。该函数利用交叉熵损在这段代码中,定义了一个名为finetune的函数,该函数接受三个参数:model、dataloaders和optimizer。该函数利用交叉熵损失在这段代码中,定义了一个名为finetune的函数,该函数接受三个参数:model、dataloaders和optimizer。该函数利用交叉熵损失函数在这段代码中,定义了一个名为finetune的函数,该函数接受三个参数:model、dataloaders和optimizer。该函数利用交叉熵损失函数(在这段代码中,定义了一个名为finetune的函数,该函数接受三个参数:model、dataloaders和optimizer。该函数利用交叉熵损失函数(nn在这段代码中,定义了一个名为finetune的函数,该函数接受三个参数:model、dataloaders和optimizer。该函数利用交叉熵损失函数(nn.Cross在这段代码中,定义了一个名为finetune的函数,该函数接受三个参数:model、dataloaders和optimizer。该函数利用交叉熵损失函数(nn.CrossEntropy在这段代码中,定义了一个名为finetune的函数,该函数接受三个参数:model、dataloaders和optimizer。该函数利用交叉熵损失函数(nn.CrossEntropyLoss在这段代码中,定义了一个名为finetune的函数,该函数接受三个参数:model、dataloaders和optimizer。该函数利用交叉熵损失函数(nn.CrossEntropyLoss)在这段代码中,定义了一个名为finetune的函数,该函数接受三个参数:model、dataloaders和optimizer。该函数利用交叉熵损失函数(nn.CrossEntropyLoss)作在这段代码中,定义了一个名为finetune的函数,该函数接受三个参数:model、dataloaders和optimizer。该函数利用交叉熵损失函数(nn.CrossEntropyLoss)作为在这段代码中,定义了一个名为finetune的函数,该函数接受三个参数:model、dataloaders和optimizer。该函数利用交叉熵损失函数(nn.CrossEntropyLoss)作为评在这段代码中,定义了一个名为finetune的函数,该函数接受三个参数:model、dataloaders和optimizer。该函数利用交叉熵损失函数(nn.CrossEntropyLoss)作为评估在这段代码中,定义了一个名为finetune的函数,该函数接受三个参数:model、dataloaders和optimizer。该函数利用交叉熵损失函数(nn.CrossEntropyLoss)作为评估标在这段代码中,定义了一个名为finetune的函数,该函数接受三个参数:model、dataloaders和optimizer。该函数利用交叉熵损失函数(nn.CrossEntropyLoss)作为评估标准在这段代码中,定义了一个名为finetune的函数,该函数接受三个参数:model、dataloaders和optimizer。该函数利用交叉熵损失函数(nn.CrossEntropyLoss)作为评估标准,在在这段代码中,定义了一个名为finetune的函数,该函数接受三个参数:model、dataloaders和optimizer。该函数利用交叉熵损失函数(nn.CrossEntropyLoss)作为评估标准,在每在这段代码中,定义了一个名为finetune的函数,该函数接受三个参数:model、dataloaders和optimizer。该函数利用交叉熵损失函数(nn.CrossEntropyLoss)作为评估标准,在每个在这段代码中,定义了一个名为finetune的函数,该函数接受三个参数:model、dataloaders和optimizer。该函数利用交叉熵损失函数(nn.CrossEntropyLoss)作为评估标准,在每个epoch在这段代码中,定义了一个名为finetune的函数,该函数接受三个参数:model、dataloaders和optimizer。该函数利用交叉熵损失函数(nn.CrossEntropyLoss)作为评估标准,在每个epoch中在这段代码中,定义了一个名为finetune的函数,该函数接受三个参数:model、dataloaders和optimizer。该函数利用交叉熵损失函数(nn.CrossEntropyLoss)作为评估标准,在每个epoch中进行在这段代码中,定义了一个名为finetune的函数,该函数接受三个参数:model、dataloaders和optimizer。该函数利用交叉熵损失函数(nn.CrossEntropyLoss)作为评估标准,在每个epoch中进行模在这段代码中,定义了一个名为finetune的函数,该函数接受三个参数:model、dataloaders和optimizer。该函数利用交叉熵损失函数(nn.CrossEntropyLoss)作为评估标准,在每个epoch中进行模型在这段代码中,定义了一个名为finetune的函数,该函数接受三个参数:model、dataloaders和optimizer。该函数利用交叉熵损失函数(nn.CrossEntropyLoss)作为评估标准,在每个epoch中进行模型微在这段代码中,定义了一个名为finetune的函数,该函数接受三个参数:model、dataloaders和optimizer。该函数利用交叉熵损失函数(nn.CrossEntropyLoss)作为评估标准,在每个epoch中进行模型微调在这段代码中,定义了一个名为finetune的函数,该函数接受三个参数:model、dataloaders和optimizer。该函数利用交叉熵损失函数(nn.CrossEntropyLoss)作为评估标准,在每个epoch中进行模型微调(在这段代码中,定义了一个名为finetune的函数,该函数接受三个参数:model、dataloaders和optimizer。该函数利用交叉熵损失函数(nn.CrossEntropyLoss)作为评估标准,在每个epoch中进行模型微调(fin在这段代码中,定义了一个名为finetune的函数,该函数接受三个参数:model、dataloaders和optimizer。该函数利用交叉熵损失函数(nn.CrossEntropyLoss)作为评估标准,在每个epoch中进行模型微调(finet在这段代码中,定义了一个名为finetune的函数,该函数接受三个参数:model、dataloaders和optimizer。该函数利用交叉熵损失函数(nn.CrossEntropyLoss)作为评估标准,在每个epoch中进行模型微调(finetune在这段代码中,定义了一个名为finetune的函数,该函数接受三个参数:model、dataloaders和optimizer。该函数利用交叉熵损失函数(nn.CrossEntropyLoss)作为评估标准,在每个epoch中进行模型微调(finetune)在这段代码中,定义了一个名为finetune的函数,该函数接受三个参数:model、dataloaders和optimizer。该函数利用交叉熵损失函数(nn.CrossEntropyLoss)作为评估标准,在每个epoch中进行模型微调(finetune)直在这段代码中,定义了一个名为finetune的函数,该函数接受三个参数:model、dataloaders和optimizer。该函数利用交叉熵损失函数(nn.CrossEntropyLoss)作为评估标准,在每个epoch中进行模型微调(finetune)直到在这段代码中,定义了一个名为finetune的函数,该函数接受三个参数:model、dataloaders和optimizer。该函数利用交叉熵损失函数(nn.CrossEntropyLoss)作为评估标准,在每个epoch中进行模型微调(finetune)直到达在这段代码中,定义了一个名为finetune的函数,该函数接受三个参数:model、dataloaders和optimizer。该函数利用交叉熵损失函数(nn.CrossEntropyLoss)作为评估标准,在每个epoch中进行模型微调(finetune)直到达到在这段代码中,定义了一个名为finetune的函数,该函数接受三个参数:model、dataloaders和optimizer。该函数利用交叉熵损失函数(nn.CrossEntropyLoss)作为评估标准,在每个epoch中进行模型微调(finetune)直到达到最在这段代码中,定义了一个名为finetune的函数,该函数接受三个参数:model、dataloaders和optimizer。该函数利用交叉熵损失函数(nn.CrossEntropyLoss)作为评估标准,在每个epoch中进行模型微调(finetune)直到达到最佳在这段代码中,定义了一个名为finetune的函数,该函数接受三个参数:model、dataloaders和optimizer。该函数利用交叉熵损失函数(nn.CrossEntropyLoss)作为评估标准,在每个epoch中进行模型微调(finetune)直到达到最佳准在这段代码中,定义了一个名为finetune的函数,该函数接受三个参数:model、dataloaders和optimizer。该函数利用交叉熵损失函数(nn.CrossEntropyLoss)作为评估标准,在每个epoch中进行模型微调(finetune)直到达到最佳准确在这段代码中,定义了一个名为finetune的函数,该函数接受三个参数:model、dataloaders和optimizer。该函数利用交叉熵损失函数(nn.CrossEntropyLoss)作为评估标准,在每个epoch中进行模型微调(finetune)直到达到最佳准确率在这段代码中,定义了一个名为finetune的函数,该函数接受三个参数:model、dataloaders和optimizer。该函数利用交叉熵损失函数(nn.CrossEntropyLoss)作为评估标准,在每个epoch中进行模型微调(finetune)直到达到最佳准确率(在这段代码中,定义了一个名为finetune的函数,该函数接受三个参数:model、dataloaders和optimizer。该函数利用交叉熵损失函数(nn.CrossEntropyLoss)作为评估标准,在每个epoch中进行模型微调(finetune)直到达到最佳准确率(best在这段代码中,定义了一个名为finetune的函数,该函数接受三个参数:model、dataloaders和optimizer。该函数利用交叉熵损失函数(nn.CrossEntropyLoss)作为评估标准,在每个epoch中进行模型微调(finetune)直到达到最佳准确率(best_acc在这段代码中,定义了一个名为finetune的函数,该函数接受三个参数:model、dataloaders和optimizer。该函数利用交叉熵损失函数(nn.CrossEntropyLoss)作为评估标准,在每个epoch中进行模型微调(finetune)直到达到最佳准确率(best_acc)。在这段代码中,定义了一个名为finetune的函数,该函数接受三个参数:model、dataloaders和optimizer。该函数利用交叉熵损失函数(nn.CrossEntropyLoss)作为评估标准,在每个epoch中进行模型微调(finetune)直到达到最佳准确率(best_acc)。在在这段代码中,定义了一个名为finetune的函数,该函数接受三个参数:model、dataloaders和optimizer。该函数利用交叉熵损失函数(nn.CrossEntropyLoss)作为评估标准,在每个epoch中进行模型微调(finetune)直到达到最佳准确率(best_acc)。在该在这段代码中,定义了一个名为finetune的函数,该函数接受三个参数:model、dataloaders和optimizer。该函数利用交叉熵损失函数(nn.CrossEntropyLoss)作为评估标准,在每个epoch中进行模型微调(finetune)直到达到最佳准确率(best_acc)。在该函数在这段代码中,定义了一个名为finetune的函数,该函数接受三个参数:model、dataloaders和optimizer。该函数利用交叉熵损失函数(nn.CrossEntropyLoss)作为评估标准,在每个epoch中进行模型微调(finetune)直到达到最佳准确率(best_acc)。在该函数的在这段代码中,定义了一个名为finetune的函数,该函数接受三个参数:model、dataloaders和optimizer。该函数利用交叉熵损失函数(nn.CrossEntropyLoss)作为评估标准,在每个epoch中进行模型微调(finetune)直到达到最佳准确率(best_acc)。在该函数的主在这段代码中,定义了一个名为finetune的函数,该函数接受三个参数:model、dataloaders和optimizer。该函数利用交叉熵损失函数(nn.CrossEntropyLoss)作为评估标准,在每个epoch中进行模型微调(finetune)直到达到最佳准确率(best_acc)。在该函数的主要在这段代码中,定义了一个名为finetune的函数,该函数接受三个参数:model、dataloaders和optimizer。该函数利用交叉熵损失函数(nn.CrossEntropyLoss)作为评估标准,在每个epoch中进行模型微调(finetune)直到达到最佳准确率(best_acc)。在该函数的主要循在这段代码中,定义了一个名为finetune的函数,该函数接受三个参数:model、dataloaders和optimizer。该函数利用交叉熵损失函数(nn.CrossEntropyLoss)作为评估标准,在每个epoch中进行模型微调(finetune)直到达到最佳准确率(best_acc)。在该函数的主要循环在这段代码中,定义了一个名为finetune的函数,该函数接受三个参数:model、dataloaders和optimizer。该函数利用交叉熵损失函数(nn.CrossEntropyLoss)作为评估标准,在每个epoch中进行模型微调(finetune)直到达到最佳准确率(best_acc)。在该函数的主要循环中在这段代码中,定义了一个名为finetune的函数,该函数接受三个参数:model、dataloaders和optimizer。该函数利用交叉熵损失函数(nn.CrossEntropyLoss)作为评估标准,在每个epoch中进行模型微调(finetune)直到达到最佳准确率(best_acc)。在该函数的主要循环中,在这段代码中,定义了一个名为finetune的函数,该函数接受三个参数:model、dataloaders和optimizer。该函数利用交叉熵损失函数(nn.CrossEntropyLoss)作为评估标准,在每个epoch中进行模型微调(finetune)直到达到最佳准确率(best_acc)。在该函数的主要循环中,设置在这段代码中,定义了一个名为finetune的函数,该函数接受三个参数:model、dataloaders和optimizer。该函数利用交叉熵损失函数(nn.CrossEntropyLoss)作为评估标准,在每个epoch中进行模型微调(finetune)直到达到最佳准确率(best_acc)。在该函数的主要循环中,设置一个在这段代码中,定义了一个名为finetune的函数,该函数接受三个参数:model、dataloaders和optimizer。该函数利用交叉熵损失函数(nn.CrossEntropyLoss)作为评估标准,在每个epoch中进行模型微调(finetune)直到达到最佳准确率(best_acc)。在该函数的主要循环中,设置一个stop在这段代码中,定义了一个名为finetune的函数,该函数接受三个参数:model、dataloaders和optimizer。该函数利用交叉熵损失函数(nn.CrossEntropyLoss)作为评估标准,在每个epoch中进行模型微调(finetune)直到达到最佳准确率(best_acc)。在该函数的主要循环中,设置一个stop变在这段代码中,定义了一个名为finetune的函数,该函数接受三个参数:model、dataloaders和optimizer。该函数利用交叉熵损失函数(nn.CrossEntropyLoss)作为评估标准,在每个epoch中进行模型微调(finetune)直到达到最佳准确率(best_acc)。在该函数的主要循环中,设置一个stop变量在这段代码中,定义了一个名为finetune的函数,该函数接受三个参数:model、dataloaders和optimizer。该函数利用交叉熵损失函数(nn.CrossEntropyLoss)作为评估标准,在每个epoch中进行模型微调(finetune)直到达到最佳准确率(best_acc)。在该函数的主要循环中,设置一个stop变量,在这段代码中,定义了一个名为finetune的函数,该函数接受三个参数:model、dataloaders和optimizer。该函数利用交叉熵损失函数(nn.CrossEntropyLoss)作为评估标准,在每个epoch中进行模型微调(finetune)直到达到最佳准确率(best_acc)。在该函数的主要循环中,设置一个stop变量,一在这段代码中,定义了一个名为finetune的函数,该函数接受三个参数:model、dataloaders和optimizer。该函数利用交叉熵损失函数(nn.CrossEntropyLoss)作为评估标准,在每个epoch中进行模型微调(finetune)直到达到最佳准确率(best_acc)。在该函数的主要循环中,设置一个stop变量,一旦在这段代码中,定义了一个名为finetune的函数,该函数接受三个参数:model、dataloaders和optimizer。该函数利用交叉熵损失函数(nn.CrossEntropyLoss)作为评估标准,在每个epoch中进行模型微调(finetune)直到达到最佳准确率(best_acc)。在该函数的主要循环中,设置一个stop变量,一旦遍在这段代码中,定义了一个名为finetune的函数,该函数接受三个参数:model、dataloaders和optimizer。该函数利用交叉熵损失函数(nn.CrossEntropyLoss)作为评估标准,在每个epoch中进行模型微调(finetune)直到达到最佳准确率(best_acc)。在该函数的主要循环中,设置一个stop变量,一旦遍历在这段代码中,定义了一个名为finetune的函数,该函数接受三个参数:model、dataloaders和optimizer。该函数利用交叉熵损失函数(nn.CrossEntropyLoss)作为评估标准,在每个epoch中进行模型微调(finetune)直到达到最佳准确率(best_acc)。在该函数的主要循环中,设置一个stop变量,一旦遍历完在这段代码中,定义了一个名为finetune的函数,该函数接受三个参数:model、dataloaders和optimizer。该函数利用交叉熵损失函数(nn.CrossEntropyLoss)作为评估标准,在每个epoch中进行模型微调(finetune)直到达到最佳准确率(best_acc)。在该函数的主要循环中,设置一个stop变量,一旦遍历完所有在这段代码中,定义了一个名为finetune的函数,该函数接受三个参数:model、dataloaders和optimizer。该函数利用交叉熵损失函数(nn.CrossEntropyLoss)作为评估标准,在每个epoch中进行模型微调(finetune)直到达到最佳准确率(best_acc)。在该函数的主要循环中,设置一个stop变量,一旦遍历完所有epoch在这段代码中,定义了一个名为finetune的函数,该函数接受三个参数:model、dataloaders和optimizer。该函数利用交叉熵损失函数(nn.CrossEntropyLoss)作为评估标准,在每个epoch中进行模型微调(finetune)直到达到最佳准确率(best_acc)。在该函数的主要循环中,设置一个stop变量,一旦遍历完所有epoch后在这段代码中,定义了一个名为finetune的函数,该函数接受三个参数:model、dataloaders和optimizer。该函数利用交叉熵损失函数(nn.CrossEntropyLoss)作为评估标准,在每个epoch中进行模型微调(finetune)直到达到最佳准确率(best_acc)。在该函数的主要循环中,设置一个stop变量,一旦遍历完所有epoch后将在这段代码中,定义了一个名为finetune的函数,该函数接受三个参数:model、dataloaders和optimizer。该函数利用交叉熵损失函数(nn.CrossEntropyLoss)作为评估标准,在每个epoch中进行模型微调(finetune)直到达到最佳准确率(best_acc)。在该函数的主要循环中,设置一个stop变量,一旦遍历完所有epoch后将其在这段代码中,定义了一个名为finetune的函数,该函数接受三个参数:model、dataloaders和optimizer。该函数利用交叉熵损失函数(nn.CrossEntropyLoss)作为评估标准,在每个epoch中进行模型微调(finetune)直到达到最佳准确率(best_acc)。在该函数的主要循环中,设置一个stop变量,一旦遍历完所有epoch后将其设在这段代码中,定义了一个名为finetune的函数,该函数接受三个参数:model、dataloaders和optimizer。该函数利用交叉熵损失函数(nn.CrossEntropyLoss)作为评估标准,在每个epoch中进行模型微调(finetune)直到达到最佳准确率(best_acc)。在该函数的主要循环中,设置一个stop变量,一旦遍历完所有epoch后将其设为在这段代码中,定义了一个名为finetune的函数,该函数接受三个参数:model、dataloaders和optimizer。该函数利用交叉熵损失函数(nn.CrossEntropyLoss)作为评估标准,在每个epoch中进行模型微调(finetune)直到达到最佳准确率(best_acc)。在该函数的主要循环中,设置一个stop变量,一旦遍历完所有epoch后将其设为1在这段代码中,定义了一个名为finetune的函数,该函数接受三个参数:model、dataloaders和optimizer。该函数利用交叉熵损失函数(nn.CrossEntropyLoss)作为评估标准,在每个epoch中进行模型微调(finetune)直到达到最佳准确率(best_acc)。在该函数的主要循环中,设置一个stop变量,一旦遍历完所有epoch后将其设为1,在这段代码中,定义了一个名为finetune的函数,该函数接受三个参数:model、dataloaders和optimizer。该函数利用交叉熵损失函数(nn.CrossEntropyLoss)作为评估标准,在每个epoch中进行模型微调(finetune)直到达到最佳准确率(best_acc)。在该函数的主要循环中,设置一个stop变量,一旦遍历完所有epoch后将其设为1,函数在这段代码中,定义了一个名为finetune的函数,该函数接受三个参数:model、dataloaders和optimizer。该函数利用交叉熵损失函数(nn.CrossEntropyLoss)作为评估标准,在每个epoch中进行模型微调(finetune)直到达到最佳准确率(best_acc)。在该函数的主要循环中,设置一个stop变量,一旦遍历完所有epoch后将其设为1,函数最在这段代码中,定义了一个名为finetune的函数,该函数接受三个参数:model、dataloaders和optimizer。该函数利用交叉熵损失函数(nn.CrossEntropyLoss)作为评估标准,在每个epoch中进行模型微调(finetune)直到达到最佳准确率(best_acc)。在该函数的主要循环中,设置一个stop变量,一旦遍历完所有epoch后将其设为1,函数最后在这段代码中,定义了一个名为finetune的函数,该函数接受三个参数:model、dataloaders和optimizer。该函数利用交叉熵损失函数(nn.CrossEntropyLoss)作为评估标准,在每个epoch中进行模型微调(finetune)直到达到最佳准确率(best_acc)。在该函数的主要循环中,设置一个stop变量,一旦遍历完所有epoch后将其设为1,函数最后返回在这段代码中,定义了一个名为finetune的函数,该函数接受三个参数:model、dataloaders和optimizer。该函数利用交叉熵损失函数(nn.CrossEntropyLoss)作为评估标准,在每个epoch中进行模型微调(finetune)直到达到最佳准确率(best_acc)。在该函数的主要循环中,设置一个stop变量,一旦遍历完所有epoch后将其设为1,函数最后返回一个在这段代码中,定义了一个名为finetune的函数,该函数接受三个参数:model、dataloaders和optimizer。该函数利用交叉熵损失函数(nn.CrossEntropyLoss)作为评估标准,在每个epoch中进行模型微调(finetune)直到达到最佳准确率(best_acc)。在该函数的主要循环中,设置一个stop变量,一旦遍历完所有epoch后将其设为1,函数最后返回一个停在这段代码中,定义了一个名为finetune的函数,该函数接受三个参数:model、dataloaders和optimizer。该函数利用交叉熵损失函数(nn.CrossEntropyLoss)作为评估标准,在每个epoch中进行模型微调(finetune)直到达到最佳准确率(best_acc)。在该函数的主要循环中,设置一个stop变量,一旦遍历完所有epoch后将其设为1,函数最后返回一个停止在这段代码中,定义了一个名为finetune的函数,该函数接受三个参数:model、dataloaders和optimizer。该函数利用交叉熵损失函数(nn.CrossEntropyLoss)作为评估标准,在每个epoch中进行模型微调(finetune)直到达到最佳准确率(best_acc)。在该函数的主要循环中,设置一个stop变量,一旦遍历完所有epoch后将其设为1,函数最后返回一个停止标在这段代码中,定义了一个名为finetune的函数,该函数接受三个参数:model、dataloaders和optimizer。该函数利用交叉熵损失函数(nn.CrossEntropyLoss)作为评估标准,在每个epoch中进行模型微调(finetune)直到达到最佳准确率(best_acc)。在该函数的主要循环中,设置一个stop变量,一旦遍历完所有epoch后将其设为1,函数最后返回一个停止标记在这段代码中,定义了一个名为finetune的函数,该函数接受三个参数:model、dataloaders和optimizer。该函数利用交叉熵损失函数(nn.CrossEntropyLoss)作为评估标准,在每个epoch中进行模型微调(finetune)直到达到最佳准确率(best_acc)。在该函数的主要循环中,设置一个stop变量,一旦遍历完所有epoch后将其设为1,函数最后返回一个停止标记stop在这段代码中,定义了一个名为finetune的函数,该函数接受三个参数:model、dataloaders和optimizer。该函数利用交叉熵损失函数(nn.CrossEntropyLoss)作为评估标准,在每个epoch中进行模型微调(finetune)直到达到最佳准确率(best_acc)。在该函数的主要循环中,设置一个stop变量,一旦遍历完所有epoch后将其设为1,函数最后返回一个停止标记stop。
pytorch是深度学习领域的一种神经网络编程框架,支持GPU加速,其灵活性和可扩展性广受欢迎。在深度学习任务中,我们经常需要绘制训练过程中的准确率(acc)变化曲线,以便更好地评估模型的性能和优化方向。下面介绍一种使用pytorch绘制acc图像的代码。 首先需要导入相关的pytorch和matplotlib库: python import torch import matplotlib.pyplot as plt 然后定义一个函数用于训练模型,并返回每个epoch的acc值: python def train(model, optimizer, criterion, train_loader, device): every_epoch_acc = [] model.train() for i, (images, labels) in enumerate(train_loader): images = images.to(device) labels = labels.to(device) optimizer.zero_grad() outputs = model(images) loss = criterion(outputs, labels) loss.backward() optimizer.step() total = labels.size(0) _, predicted = torch.max(outputs.data, 1) correct = (predicted == labels).sum().item() acc = correct / total every_epoch_acc.append(acc) return every_epoch_acc 在主函数中,进行模型训练并获取每个epoch的acc值,然后根据这些acc值绘制图像: python def main(): ... every_epoch_acc = [] for epoch in range(num_epochs): train_acc = train(model, optimizer, criterion, train_loader, device) every_epoch_acc += train_acc plt.plot(every_epoch_acc) plt.title('Training Accuracy vs. Epoch') plt.ylabel('Accuracy') plt.xlabel('Epoch') plt.savefig('acc.png') plt.show() 此处省略了主函数中的其他部分,完整代码如下: python import torch import matplotlib.pyplot as plt def train(model, optimizer, criterion, train_loader, device): every_epoch_acc = [] model.train() for i, (images, labels) in enumerate(train_loader): images = images.to(device) labels = labels.to(device) optimizer.zero_grad() outputs = model(images) loss = criterion(outputs, labels) loss.backward() optimizer.step() total = labels.size(0) _, predicted = torch.max(outputs.data, 1) correct = (predicted == labels).sum().item() acc = correct / total every_epoch_acc.append(acc) return every_epoch_acc def main(): # 导入数据集和定义模型、优化器等 ... every_epoch_acc = [] for epoch in range(num_epochs): train_acc = train(model, optimizer, criterion, train_loader, device) every_epoch_acc += train_acc plt.plot(every_epoch_acc) plt.title('Training Accuracy vs. Epoch') plt.ylabel('Accuracy') plt.xlabel('Epoch') plt.savefig('acc.png') plt.show() if __name__ == '__main__': main() 以上就是使用pytorch绘制acc图像的代码。
UNet模型通常用于图像分割任务,这里介绍一下如何对UNet模型的训练结果进行可视化。 首先,我们可以使用Keras内置的History类记录模型的训练过程,包括每个epoch的训练损失、验证损失和准确率等。我们可以通过以下代码来获取这些信息: python history = model.fit(x_train, y_train, validation_data=(x_val, y_val), epochs=50, batch_size=16) train_loss = history.history['loss'] val_loss = history.history['val_loss'] train_acc = history.history['accuracy'] val_acc = history.history['val_accuracy'] 其中,train_loss为训练集损失,val_loss为验证集损失,train_acc为训练集准确率,val_acc为验证集准确率。我们可以使用Matplotlib库将这些信息可视化成图表。 首先是损失曲线的绘制: python import matplotlib.pyplot as plt epochs = range(len(train_loss)) plt.plot(epochs, train_loss, 'b', label='Training loss') plt.plot(epochs, val_loss, 'r', label='Validation loss') plt.title('Training and validation loss') plt.legend() plt.show() 这段代码将训练集和验证集的损失曲线绘制在同一张图中,可以直观地观察模型的训练效果。 接下来是准确率曲线的绘制: python plt.plot(epochs, train_acc, 'b', label='Training accuracy') plt.plot(epochs, val_acc, 'r', label='Validation accuracy') plt.title('Training and validation accuracy') plt.legend() plt.show() 这段代码将训练集和验证集的准确率曲线绘制在同一张图中,同样可以直观地观察模型的训练效果。 需要注意的是,这些可视化结果只能作为参考,具体的模型表现还需要结合实际应用场景进行评估。
好的,下面是一个简单的用PyTorch训练模型并用tensorboardX记录loss曲线和acc曲线的代码演示: python import torch import torch.nn as nn import torch.optim as optim from torch.utils.tensorboard import SummaryWriter from torchvision import datasets, transforms # 定义模型 class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(1, 10, kernel_size=5) self.conv2 = nn.Conv2d(10, 20, kernel_size=5) self.conv2_drop = nn.Dropout2d() self.fc1 = nn.Linear(320, 50) self.fc2 = nn.Linear(50, 10) def forward(self, x): x = nn.functional.relu(nn.functional.max_pool2d(self.conv1(x), 2)) x = nn.functional.relu(nn.functional.max_pool2d(self.conv2_drop(self.conv2(x)), 2)) x = x.view(-1, 320) x = nn.functional.relu(self.fc1(x)) x = nn.functional.dropout(x, training=self.training) x = self.fc2(x) return nn.functional.log_softmax(x, dim=1) # 加载数据集 train_loader = torch.utils.data.DataLoader( datasets.MNIST('../data', train=True, download=True, transform=transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,)) ])), batch_size=64, shuffle=True) test_loader = torch.utils.data.DataLoader( datasets.MNIST('../data', train=False, transform=transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,)) ])), batch_size=1000, shuffle=True) # 定义训练函数 def train(model, device, train_loader, optimizer, criterion, epoch, writer): model.train() for batch_idx, (data, target) in enumerate(train_loader): data, target = data.to(device), target.to(device) optimizer.zero_grad() output = model(data) loss = criterion(output, target) loss.backward() optimizer.step() writer.add_scalar('train_loss', loss.item(), epoch * len(train_loader) + batch_idx) # 定义测试函数 def test(model, device, test_loader, criterion, epoch, writer): model.eval() test_loss = 0 correct = 0 with torch.no_grad(): for data, target in test_loader: data, target = data.to(device), target.to(device) output = model(data) test_loss += criterion(output, target).item() * len(data) pred = output.argmax(dim=1, keepdim=True) correct += pred.eq(target.view_as(pred)).sum().item() test_loss /= len(test_loader.dataset) accuracy = correct / len(test_loader.dataset) writer.add_scalar('test_loss', test_loss, epoch) writer.add_scalar('test_accuracy', accuracy, epoch) # 初始化模型、优化器、损失函数、设备和tensorboard writer model = Net().to('cuda') optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5) criterion = nn.CrossEntropyLoss() device = 'cuda' writer = SummaryWriter() # 训练和测试模型 for epoch in range(1, 11): train(model, device, train_loader, optimizer, criterion, epoch, writer) test(model, device, test_loader, criterion, epoch, writer) writer.close() 运行上述代码后,就可以在tensorboard中看到train_loss、test_loss和test_accuracy的曲线了。

最新推荐

在tensorflow下利用plt画论文中loss,acc等曲线图实例

fig_loss = np.zeros([n_epoch]) fig_acc1 = np.zeros([n_epoch]) fig_acc2= np.zeros([n_epoch]) for epoch in range(n_epoch): start_time = time.time() #training train_loss, train_acc, n_batch = 0, 0, 0 ...

代码随想录最新第三版-最强八股文

这份PDF就是最强⼋股⽂! 1. C++ C++基础、C++ STL、C++泛型编程、C++11新特性、《Effective STL》 2. Java Java基础、Java内存模型、Java面向对象、Java集合体系、接口、Lambda表达式、类加载机制、内部类、代理类、Java并发、JVM、Java后端编译、Spring 3. Go defer底层原理、goroutine、select实现机制 4. 算法学习 数组、链表、回溯算法、贪心算法、动态规划、二叉树、排序算法、数据结构 5. 计算机基础 操作系统、数据库、计算机网络、设计模式、Linux、计算机系统 6. 前端学习 浏览器、JavaScript、CSS、HTML、React、VUE 7. 面经分享 字节、美团Java面、百度、京东、暑期实习...... 8. 编程常识 9. 问答精华 10.总结与经验分享 ......

基于交叉模态对应的可见-红外人脸识别及其表现评估

12046通过调整学习:基于交叉模态对应的可见-红外人脸识别Hyunjong Park*Sanghoon Lee*Junghyup Lee Bumsub Ham†延世大学电气与电子工程学院https://cvlab.yonsei.ac.kr/projects/LbA摘要我们解决的问题,可见光红外人重新识别(VI-reID),即,检索一组人的图像,由可见光或红外摄像机,在交叉模态设置。VI-reID中的两个主要挑战是跨人图像的类内变化,以及可见光和红外图像之间的跨模态假设人图像被粗略地对准,先前的方法尝试学习在不同模态上是有区别的和可概括的粗略的图像或刚性的部分级人表示然而,通常由现成的对象检测器裁剪的人物图像不一定是良好对准的,这分散了辨别性人物表示学习。在本文中,我们介绍了一种新的特征学习框架,以统一的方式解决这些问题。为此,我们建议利用密集的对应关系之间的跨模态的人的形象,年龄。这允许解决像素级中�

javascript 中字符串 变量

在 JavaScript 中,字符串变量可以通过以下方式进行定义和赋值: ```javascript // 使用单引号定义字符串变量 var str1 = 'Hello, world!'; // 使用双引号定义字符串变量 var str2 = "Hello, world!"; // 可以使用反斜杠转义特殊字符 var str3 = "It's a \"nice\" day."; // 可以使用模板字符串,使用反引号定义 var str4 = `Hello, ${name}!`; // 可以使用 String() 函数进行类型转换 var str5 = String(123); //

数据结构1800试题.pdf

你还在苦苦寻找数据结构的题目吗?这里刚刚上传了一份数据结构共1800道试题,轻松解决期末挂科的难题。不信?你下载看看,这里是纯题目,你下载了再来私信我答案。按数据结构教材分章节,每一章节都有选择题、或有判断题、填空题、算法设计题及应用题,题型丰富多样,共五种类型题目。本学期已过去一半,相信你数据结构叶已经学得差不多了,是时候拿题来练练手了,如果你考研,更需要这份1800道题来巩固自己的基础及攻克重点难点。现在下载,不早不晚,越往后拖,越到后面,你身边的人就越卷,甚至卷得达到你无法想象的程度。我也是曾经遇到过这样的人,学习,练题,就要趁现在,不然到时你都不知道要刷数据结构题好还是高数、工数、大英,或是算法题?学完理论要及时巩固知识内容才是王道!记住!!!下载了来要答案(v:zywcv1220)。

通用跨域检索的泛化能力

12056通用跨域检索:跨类和跨域的泛化2* Soka Soka酒店,Soka-马上预订;1印度理工学院,Kharagpur,2印度科学学院,班加罗尔soumava2016@gmail.com,{titird,somabiswas} @ iisc.ac.in摘要在这项工作中,我们第一次解决了通用跨域检索的问题,其中测试数据可以属于在训练过程中看不到的类或域。由于动态增加的类别数量和对每个可能的域的训练的实际约束,这需要大量的数据,所以对看不见的类别和域的泛化是重要的。为了实现这一目标,我们提出了SnMpNet(语义Neighbourhood和混合预测网络),它包括两个新的损失,以占在测试过程中遇到的看不见的类和域。具体来说,我们引入了一种新的语义邻域损失,以弥合可见和不可见类之间的知识差距,并确保潜在的空间嵌入的不可见类是语义上有意义的,相对于其相邻的类。我们还在图像级以及数据的语义级引入了基于混�

css怎么写隐藏下拉列表

您可以使用 CSS 中的 display 属性来隐藏下拉列表。具体方法是: 1. 首先,在 HTML 中找到您想要隐藏的下拉列表元素的选择器。例如,如果您的下拉列表元素是一个 select 标签,则可以使用以下选择器:`select { }` 2. 在该选择器中添加 CSS 属性:`display: none;`,即可将该下拉列表元素隐藏起来。 例如,以下是一个隐藏下拉列表的 CSS 代码示例: ```css select { display: none; } ``` 请注意,这将隐藏所有的 select 元素。如果您只想隐藏特定的下拉列表,请使用该下拉列表的选择器来替代 sel

TFT屏幕-ILI9486数据手册带命令标签版.pdf

ILI9486手册 官方手册 ILI9486 is a 262,144-color single-chip SoC driver for a-Si TFT liquid crystal display with resolution of 320RGBx480 dots, comprising a 960-channel source driver, a 480-channel gate driver, 345,600bytes GRAM for graphic data of 320RGBx480 dots, and power supply circuit. The ILI9486 supports parallel CPU 8-/9-/16-/18-bit data bus interface and 3-/4-line serial peripheral interfaces (SPI). The ILI9486 is also compliant with RGB (16-/18-bit) data bus for video image display. For high speed serial interface, the ILI9486 also provides one data and clock lane and supports up to 500Mbps on MIPI DSI link. And also support MDDI interface.

生成模型的反事实解释方法及其局限性

693694不能很好地可视化/解释非空间定位的属性,如大小、颜色等。此外,它们可以显示图像的哪些区域可以被改变以影响分类,但不显示它们应该如何被改变。反事实解释通过提供替代输入来解决这些限制,其中改变一小组属性并且观察到不同的分类结果。生成模型是产生视觉反事实解释的自然候选者,事实上,最近的工作已经朝着这个目标取得了进展在[31,7,32,1]中,产生了生成的反事实解释,但它们的可视化立即改变了所有相关属性,如图所示。二、[29]中提供的另一种相关方法是使用来自分类器的深度表示来以不同粒度操纵生成的图像然而,这些可能涉及不影响分类结果的性质,并且还组合了若干属性。因此,这些方法不允许根据原子属性及其对分类的影响来其他解释方法使用属性生成反事实,其中可以对所需属性进行完全或部分监督[10,5

android修改电量颜色,android状态栏电池颜色?

您可以通过修改Android系统的主题样式来更改状态栏电池颜色。以下是一些可能的方法: 1. 在您的应用程序主题中添加以下属性: ```xml <item name="android:colorControlNormal">#your_color_here</item> ``` 2. 如果您使用的是Android 6.0及更高版本,则可以使用以下代码更改状态栏电池颜色: ```java if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.M) { getWindow().setStatusBarColor(getResources(