k-means做图像分割计算miou的代码,用python语言
时间: 2024-03-25 10:36:47 浏览: 161
以下是使用k-means算法对图像进行分割,并计算miou值的Python代码:
```python
import numpy as np
from sklearn.cluster import KMeans
from skimage import io
# 读取图像
image = io.imread('image.jpg')
# 将图像的三通道像素转化为二维数组
rows, cols, channels = image.shape
X = np.reshape(image, (rows * cols, channels))
# 对图像进行K-means聚类
n_clusters = 2 # 分割成两个类别
kmeans = KMeans(n_clusters=n_clusters, random_state=0).fit(X)
labels = kmeans.labels_
# 将聚类结果转换为图像
segmented_image = np.reshape(labels, (rows, cols))
# 计算miou
ground_truth = io.imread('ground_truth.jpg')
gt_labels = np.zeros((rows, cols))
gt_labels[ground_truth[:,:,0] > 127] = 1 # 假设标注图像中灰度值大于127的像素属于第一个类别
intersection = np.sum(np.logical_and(segmented_image == 1, gt_labels == 1))
union = np.sum(np.logical_or(segmented_image == 1, gt_labels == 1))
miou = intersection / union
print('miou:', miou)
```
需要注意的是,上述代码中需要指定图像文件名和标注图像文件名。此外,计算miou需要假设标注图像中灰度值大于某个阈值的像素属于第一个类别。在实际应用中,需要根据具体情况调整阈值。
阅读全文