y_show_hat = model.predict(x_show) print(y_show_hat.shape) print(y_show_hat) y_show_hat = y_show_hat.reshape(x1.shape) print(y_show_hat) plt.figure(facecolor='w') plt.pcolormesh(x1, x2, y_show_hat, cmap=cm_light) plt.scatter(x_test[0], x_test[1], c=y_test.ravel(), edgecolors='k', s=100, zorder=10, cmap=cm_dark, marker='*') plt.scatter(x[0], x[1], c=y.ravel(), edgecolors='k', s=20, cmap=cm_dark)

时间: 2024-04-08 07:35:59 浏览: 96
这段代码是一个简单的分类模型的可视化过程。首先,通过模型 `model` 的 `predict` 方法对输入数据 `x_show` 进行预测,得到预测结果 `y_show_hat`。然后,打印出 `y_show_hat` 的形状和值。 接下来,将 `y_show_hat` 重新调整形状为与 `x1` 相同,并打印出调整后的 `y_show_hat`。这一步是为了将预测结果与输入数据的网格形状对应起来。 然后,创建一个新的图表,设置背景色为白色。使用 `plt.pcolormesh` 方法绘制分类结果的颜色填充图,其中 `x1` 和 `x2` 是输入数据的网格坐标,`y_show_hat` 是预测结果,颜色映射使用之前定义的 `cm_light`。 接着,使用 `plt.scatter` 方法绘制测试数据点的散点图,其中 `x_test[0]` 和 `x_test[1]` 是测试数据的坐标,`y_test.ravel()` 是测试数据的真实标签,边缘颜色为黑色,大小为100,层次为10,颜色映射使用之前定义的 `cm_dark`,标记形状为星号。 最后,使用 `plt.scatter` 方法绘制训练数据点的散点图,其中 `x[0]` 和 `x[1]` 是训练数据的坐标,`y.ravel()` 是训练数据的真实标签,边缘颜色为黑色,大小为20,颜色映射使用之前定义的 `cm_dark`。 这段代码的目的是将分类模型的预测结果以可视化的方式展示出来,并同时展示测试数据和训练数据的分布情况。
相关问题

分析以下代码#!/usr/bin/python # -*- coding:utf-8 -*- import numpy as np import pandas as pd import matplotlib as mpl import matplotlib.pyplot as plt from sklearn import svm from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score # 'sepal length', 'sepal width', 'petal length', 'petal width' iris_feature = u'花萼长度', u'花萼宽度', u'花瓣长度', u'花瓣宽度' if __name__ == "__main__": path = 'D:\\iris.data' # 数据文件路径 data = pd.read_csv(path, header=None) x, y = data[range(4)], data[4] y = pd.Categorical(y).codes x = x[[0, 1]] x_train, x_test, y_train, y_test = train_test_split(x, y, random_state=1, train_size=0.6) # 分类器 clf = svm.SVC(C=0.1, kernel='linear', decision_function_shape='ovr') # clf = svm.SVC(C=0.8, kernel='rbf', gamma=20, decision_function_shape='ovr') clf.fit(x_train, y_train.ravel()) # 准确率 print (clf.score(x_train, y_train)) # 精度 print ('训练集准确率:', accuracy_score(y_train, clf.predict(x_train))) print (clf.score(x_test, y_test)) print ('测试集准确率:', accuracy_score(y_test, clf.predict(x_test))) # decision_function print ('decision_function:\n', clf.decision_function(x_train)) print ('\npredict:\n', clf.predict(x_train)) # 画图 x1_min, x2_min = x.min() x1_max, x2_max = x.max() x1, x2 = np.mgrid[x1_min:x1_max:500j, x2_min:x2_max:500j] # 生成网格采样点 grid_test = np.stack((x1.flat, x2.flat), axis=1) # 测试点 # print 'grid_test = \n', grid_test # Z = clf.decision_function(grid_test) # 样本到决策面的距离 # print Z grid_hat = clf.predict(grid_test) # 预测分类值 grid_hat = grid_hat.reshape(x1.shape) # 使之与输入的形状相同 mpl.rcParams['font.sans-serif'] = [u'SimHei'] mpl.rcParams['axes.unicode_minus'] = False cm_light = mpl.colors.ListedColormap(['#A0FFA0', '#FFA0A0', '#A0A0FF']) cm_dark = mpl.colors.ListedColormap(['g', 'r', 'b']) plt.figure(facecolor='w') plt.pcolormesh(x1, x2, grid_hat, shading='auto', cmap=cm_light) plt.scatter(x[0], x[1], c=y, edgecolors='k', s=50, cmap=cm_dark) # 样本 plt.scatter(x_test[0], x_test[1], s=120, facecolors='none', zorder=10) # 圈中测试集样本 plt.xlabel(iris_feature[0], fontsize=13) plt.ylabel(iris_feature[1], fontsize=13) plt.xlim(x1_min, x1_max) plt.ylim(x2_min, x2_max) plt.title(u'鸢尾花SVM二特征分类', fontsize=16) plt.grid(b=True, ls=':') plt.tight_layout(pad=1.5) plt.show()

这段代码是使用 SVM(支持向量机)算法对鸢尾花数据集进行分类,并且使用 matplotlib 库对分类结果进行可视化。代码的主要流程如下: 1. 导入必要的库,包括 numpy、pandas、matplotlib、sklearn 中的 svm、train_test_split 和 accuracy_score。 2. 读取鸢尾花数据集,将前四列作为特征值 x,将最后一列作为目标值 y,并将 y 转换为数字编码。 3. 选取前两个特征值作为二维平面上的坐标,将数据集划分为训练集和测试集。 4. 使用 svm.SVC() 函数创建支持向量机分类器,并使用训练集对其进行训练。 5. 计算训练集和测试集的准确率,并输出结果。 6. 使用 predict() 函数对训练集进行预测,并输出 decision_function() 函数计算出的样本到决策面的距离。 7. 使用 meshgrid() 函数生成二维网格采样点,并使用 predict() 函数对每个采样点进行分类预测,将预测结果可视化出来。 8. 可视化结果包括训练集和测试集的样本点、分类边界和测试集的样本点所在的圆圈。 9. 最后使用 show() 函数显示可视化结果。

使用python创建一个使用归一化、Xavier初始化、正则化方法和MSGD的BP网络,该网络有8个输入1个输出1层隐藏层,要求分为两个模块(py文件),在确认输入、输出的训练集之后,模型不会出现shape类报错,且一个是BP网络,另一个是主函数,在每句代码后添加注释;训练集数据存于xlsx表格前3000行中,测试集为之后的40行,且均为float类型。并且能够输出各输入的权重。尝试在main模块中实现将训练后的BP网络模型输出为一个文件,绘制R2图来说明模型的拟合度,并且输出MAE、MSE、预测值和真实值之间的相对误差平均百分比,绘制测试集的各输入对应的实际输出和预测输出的拟合折线图,且R2图和折线图中使用的数据均为未变换数据。

很高兴回答您的问题。这是一个比较复杂的问题,需要涉及到许多知识点,我会尽可能详细地给出代码和注释。首先,我们需要安装一些必要的库,包括pandas,numpy和openpyxl,可以使用以下命令进行安装: ```python !pip install pandas numpy openpyxl ``` 接下来,我们分为两个模块进行编写,第一个是BP网络模块,我们将其命名为bp_network.py。代码如下: ```python import numpy as np import pandas as pd class BPNetwork: def __init__(self, input_size, hidden_size, output_size, learning_rate, reg_lambda, momentum): """ 初始化网络参数,并进行归一化和Xavier初始化 :param input_size: 输入层大小 :param hidden_size: 隐藏层大小 :param output_size: 输出层大小 :param learning_rate: 学习率 :param reg_lambda: 正则化项系数 :param momentum: 动量因子 """ self.input_size = input_size self.hidden_size = hidden_size self.output_size = output_size self.learning_rate = learning_rate self.reg_lambda = reg_lambda self.momentum = momentum # 初始化权重和偏置 self.W1 = np.random.randn(self.input_size, self.hidden_size) * np.sqrt(2.0 / (self.input_size + self.hidden_size)) # Xavier初始化 self.b1 = np.zeros((1, self.hidden_size)) self.W2 = np.random.randn(self.hidden_size, self.output_size) * np.sqrt(2.0 / (self.hidden_size + self.output_size)) # Xavier初始化 self.b2 = np.zeros((1, self.output_size)) # 初始化动量参数 self.v_W1 = np.zeros((self.input_size, self.hidden_size)) self.v_b1 = np.zeros((1, self.hidden_size)) self.v_W2 = np.zeros((self.hidden_size, self.output_size)) self.v_b2 = np.zeros((1, self.output_size)) def sigmoid(self, x): """ sigmoid激活函数 """ return 1 / (1 + np.exp(-x)) def sigmoid_derivative(self, x): """ sigmoid激活函数的导数 """ return x * (1 - x) def forward(self, X): """ 前向传播 """ self.z1 = np.dot(X, self.W1) + self.b1 self.a1 = self.sigmoid(self.z1) self.z2 = np.dot(self.a1, self.W2) + self.b2 self.y_hat = self.z2 return self.y_hat def backward(self, X, y, y_hat): """ 反向传播 """ # 计算输出层误差 delta2 = y_hat - y # 计算隐藏层误差 delta1 = np.dot(delta2, self.W2.T) * self.sigmoid_derivative(self.a1) # 计算输出层权重和偏置的梯度 dW2 = np.dot(self.a1.T, delta2) + self.reg_lambda * self.W2 db2 = np.sum(delta2, axis=0, keepdims=True) # 计算隐藏层权重和偏置的梯度 dW1 = np.dot(X.T, delta1) + self.reg_lambda * self.W1 db1 = np.sum(delta1, axis=0) # 更新权重和偏置 self.v_W2 = self.momentum * self.v_W2 - self.learning_rate * dW2 self.v_b2 = self.momentum * self.v_b2 - self.learning_rate * db2 self.W2 += self.v_W2 self.b2 += self.v_b2 self.v_W1 = self.momentum * self.v_W1 - self.learning_rate * dW1 self.v_b1 = self.momentum * self.v_b1 - self.learning_rate * db1 self.W1 += self.v_W1 self.b1 += self.v_b1 def train(self, X_train, y_train, X_test, y_test, epochs): """ 训练网络 """ train_loss = [] test_loss = [] for i in range(epochs): # 前向传播 y_hat_train = self.forward(X_train) y_hat_test = self.forward(X_test) # 计算训练集和测试集的损失 train_loss.append(np.mean(np.square(y_train - y_hat_train))) test_loss.append(np.mean(np.square(y_test - y_hat_test))) # 反向传播 self.backward(X_train, y_train, y_hat_train) # 输出每100个epoch的损失 if i % 100 == 0: print("Epoch: {}, train_loss: {:.4f}, test_loss: {:.4f}".format(i, train_loss[i], test_loss[i])) # 输出每个输入的权重 print("Weights of input features:") for i in range(self.input_size): print("Feature {}: {}".format(i+1, self.W1[i])) # 返回训练集和测试集的损失 return train_loss, test_loss def predict(self, X): """ 预测 """ return self.forward(X) ``` 上面的代码定义了一个BP网络类,包括初始化参数、sigmoid激活函数、前向传播、反向传播、训练和预测方法。其中,前向传播和反向传播分别计算输出和隐藏层的输出,以及权重和偏置的梯度,并进行更新。训练方法使用了动量的梯度下降法进行优化。在训练完成后,我们可以输出每个输入的权重,用于分析各个输入对输出的影响。 接下来,我们编写主函数模块,命名为main.py。代码如下: ```python import numpy as np import pandas as pd from bp_network import BPNetwork # 读取训练集和测试集数据 train_data = pd.read_excel('data.xlsx', nrows=3000) test_data = pd.read_excel('data.xlsx', skiprows=range(1, 3000), nrows=40) # 将数据转换为numpy数组,并进行归一化 X_train = train_data.iloc[:, :-1].values y_train = train_data.iloc[:, -1:].values X_mean = np.mean(X_train, axis=0) X_std = np.std(X_train, axis=0) X_train = (X_train - X_mean) / X_std y_mean = np.mean(y_train, axis=0) y_std = np.std(y_train, axis=0) y_train = (y_train - y_mean) / y_std X_test = test_data.iloc[:, :-1].values y_test = test_data.iloc[:, -1:].values X_test = (X_test - X_mean) / X_std y_test = (y_test - y_mean) / y_std # 创建BP网络模型 model = BPNetwork(input_size=8, hidden_size=16, output_size=1, learning_rate=0.01, reg_lambda=0.01, momentum=0.9) # 训练模型 train_loss, test_loss = model.train(X_train, y_train, X_test, y_test, epochs=1000) # 预测测试集并进行反归一化 y_pred = model.predict(X_test) y_pred = y_pred * y_std + y_mean y_test = y_test * y_std + y_mean # 计算MAE和MSE mae = np.mean(np.abs(y_pred - y_test)) mse = np.mean(np.square(y_pred - y_test)) print("MAE: {:.4f}, MSE: {:.4f}".format(mae, mse)) # 计算预测值和真实值之间的相对误差平均百分比 error = np.abs((y_pred - y_test) / y_test) mean_error = np.mean(error) * 100 print("Mean relative error: {:.2f}%".format(mean_error)) # 绘制R2图 import matplotlib.pyplot as plt from sklearn.metrics import r2_score r2 = r2_score(y_test, y_pred) plt.scatter(y_test, y_pred) plt.plot([y_test.min(), y_test.max()], [y_test.min(), y_test.max()], 'k--', lw=4) plt.xlabel('Actual') plt.ylabel('Predicted') plt.title('R2: {:.4f}'.format(r2)) plt.show() # 绘制测试集的各输入对应的实际输出和预测输出的拟合折线图 fig, ax = plt.subplots(figsize=(10, 6)) for i in range(X_test.shape[1]): ax.plot(X_test[:, i], y_test, 'o', label='Actual') ax.plot(X_test[:, i], y_pred, 'x', label='Predicted') ax.set_xlabel('Feature {}'.format(i+1)) ax.set_ylabel('Output') ax.set_title('Input Feature {} vs Output'.format(i+1)) ax.legend() plt.show() # 将训练后的模型保存为文件 import pickle with open('model.pkl', 'wb') as f: pickle.dump(model, f) ``` 上面的代码首先读取了训练集和测试集数据,并进行了归一化处理。接着,我们使用BPNetwork类创建了一个BP网络模型,并进行了训练。训练完成后,我们使用模型对测试集进行了预测,并进行了反归一化处理。然后,我们计算了MAE和MSE,并输出了预测值和真实值之间的相对误差平均百分比。接着,我们绘制了R2图和测试集的各输入对应的实际输出和预测输出的拟合折线图。最后,我们将训练后的模型保存为文件,以便以后使用。 综上所述,我们完成了一个使用归一化、Xavier初始化、正则化方法和MSGD的BP网络,并使用训练集和测试集进行了训练和测试,并且能够输出各输入的权重。我们还实现了将训练后的模型保存为文件,绘制R2图,计算MAE和MSE,并输出预测值和真实值之间的相对误差平均百分比,以及绘制测试集的各输入对应的实际输出和预测输出的拟合折线图。
阅读全文

相关推荐

最新推荐

recommend-type

解决Tensorflow2.0 tf.keras.Model.load_weights() 报错处理问题

在TensorFlow 2.0中,`tf.keras.Model.load_weights()` 是一个非常有用的函数,用于加载预先训练好的权重到模型中,以便继续训练或进行预测。然而,在实际操作中,可能会遇到一些报错,本文将针对这些问题提供解决...
recommend-type

RuoYi-Vue 全新 Pro 版本,优化重构所有功能

RuoYi-Vue 全新 Pro 版本,优化重构所有功能。基于 Spring Boot + MyBatis Plus + Vue & Element 实现的后台管理系统 + 微信小程序,支持 RBAC 动态权限、数据权限、SaaS 多租户、Flowable 工作流、三方登录、支付、短信、商城、CRM、ERP、AI 等功能
recommend-type

(源码)基于Spring Boot和MyBatis的订餐管理系统.zip

# 基于Spring Boot和MyBatis的订餐管理系统 ## 项目简介 本项目是一个基于Spring Boot和MyBatis框架的订餐管理系统,旨在提供一个高效、易用的在线订餐平台。系统分为客户端和后台管理系统两部分,客户端面向普通用户,提供用户登录、退出、菜品订购和查看订单等功能后台管理系统面向管理员,提供管理员登录、退出、菜品管理(添加、查询、修改、删除)、订单处理、用户管理(添加、查询、删除)等功能。 ## 项目的主要特性和功能 ### 客户端功能 用户登录与退出用户可以通过系统进行登录和退出操作。 菜品订购用户可以浏览菜单并选择菜品进行订购。 查看订单用户可以查看自己的订单历史。 ### 后台管理系统功能 管理员登录与退出管理员可以通过系统进行登录和退出操作。 菜品管理 添加菜品管理员可以添加新的菜品到菜单中。 查询菜品管理员可以查询现有的菜品信息。 修改菜品管理员可以修改菜品的详细信息。
recommend-type

深入浅出:自定义 Grunt 任务的实践指南

资源摘要信息:"Grunt 是一个基于 Node.js 的自动化任务运行器,它极大地简化了重复性任务的管理。在前端开发中,Grunt 经常用于压缩文件、运行测试、编译 LESS/SASS、优化图片等。本文档提供了自定义 Grunt 任务的示例,对于希望深入掌握 Grunt 或者已经开始使用 Grunt 但需要扩展其功能的开发者来说,这些示例非常有帮助。" ### 知识点详细说明 #### 1. 创建和加载任务 在 Grunt 中,任务是由 JavaScript 对象表示的配置块,可以包含任务名称、操作和选项。每个任务可以通过 `grunt.registerTask(taskName, [description, ] fn)` 来注册。例如,一个简单的任务可以这样定义: ```javascript grunt.registerTask('example', function() { grunt.log.writeln('This is an example task.'); }); ``` 加载外部任务,可以通过 `grunt.loadNpmTasks('grunt-contrib-jshint')` 来实现,这通常用在安装了新的插件后。 #### 2. 访问 CLI 选项 Grunt 支持命令行接口(CLI)选项。在任务中,可以通过 `grunt.option('option')` 来访问命令行传递的选项。 ```javascript grunt.registerTask('printOptions', function() { grunt.log.writeln('The watch option is ' + grunt.option('watch')); }); ``` #### 3. 访问和修改配置选项 Grunt 的配置存储在 `grunt.config` 对象中。可以通过 `grunt.config.get('configName')` 获取配置值,通过 `grunt.config.set('configName', value)` 设置配置值。 ```javascript grunt.registerTask('printConfig', function() { grunt.log.writeln('The banner config is ' + grunt.config.get('banner')); }); ``` #### 4. 使用 Grunt 日志 Grunt 提供了一套日志系统,可以输出不同级别的信息。`grunt.log` 提供了 `writeln`、`write`、`ok`、`error`、`warn` 等方法。 ```javascript grunt.registerTask('logExample', function() { grunt.log.writeln('This is a log example.'); grunt.log.ok('This is OK.'); }); ``` #### 5. 使用目标 Grunt 的配置可以包含多个目标(targets),这样可以为不同的环境或文件设置不同的任务配置。在任务函数中,可以通过 `this.args` 获取当前目标的名称。 ```javascript grunt.initConfig({ jshint: { options: { curly: true, }, files: ['Gruntfile.js'], my_target: { options: { eqeqeq: true, }, }, }, }); grunt.registerTask('showTarget', function() { grunt.log.writeln('Current target is: ' + this.args[0]); }); ``` #### 6. 异步任务 Grunt 支持异步任务,这对于处理文件读写或网络请求等异步操作非常重要。异步任务可以通过传递一个回调函数给任务函数来实现。若任务是一个异步操作,必须调用回调函数以告知 Grunt 任务何时完成。 ```javascript grunt.registerTask('asyncTask', function() { var done = this.async(); // 必须调用 this.async() 以允许异步任务。 setTimeout(function() { grunt.log.writeln('This is an async task.'); done(); // 任务完成时调用 done()。 }, 1000); }); ``` ### Grunt插件和Gruntfile配置 Grunt 的强大之处在于其插件生态系统。通过 `npm` 安装插件后,需要在 `Gruntfile.js` 中配置这些插件,才能在任务中使用它们。Gruntfile 通常包括任务注册、任务配置、加载外部任务三大部分。 - 任务注册:使用 `grunt.registerTask` 方法。 - 任务配置:使用 `grunt.initConfig` 方法。 - 加载外部任务:使用 `grunt.loadNpmTasks` 方法。 ### 结论 通过上述的示例和说明,我们可以了解到创建一个自定义的 Grunt 任务需要哪些步骤以及需要掌握哪些基础概念。自定义任务的创建对于利用 Grunt 来自动化项目中的各种操作是非常重要的,它可以帮助开发者提高工作效率并保持代码的一致性和标准化。在掌握这些基础知识后,开发者可以更进一步地探索 Grunt 的高级特性,例如子任务、组合任务等,从而实现更加复杂和强大的自动化流程。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

数据可视化在缺失数据识别中的作用

![缺失值处理(Missing Value Imputation)](https://img-blog.csdnimg.cn/20190521154527414.PNG?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3l1bmxpbnpp,size_16,color_FFFFFF,t_70) # 1. 数据可视化基础与重要性 在数据科学的世界里,数据可视化是将数据转化为图形和图表的实践过程,使得复杂的数据集可以通过直观的视觉形式来传达信息。它
recommend-type

ABB机器人在自动化生产线中是如何进行路径规划和任务执行的?请结合实际应用案例分析。

ABB机器人在自动化生产线中的应用广泛,其核心在于精确的路径规划和任务执行。路径规划是指机器人根据预定的目标位置和工作要求,计算出最优的移动轨迹。任务执行则涉及根据路径规划结果,控制机器人关节和运动部件精确地按照轨迹移动,完成诸如焊接、装配、搬运等任务。 参考资源链接:[ABB-机器人介绍.ppt](https://wenku.csdn.net/doc/7xfddv60ge?spm=1055.2569.3001.10343) ABB机器人能够通过其先进的控制器和编程软件进行精确的路径规划。控制器通常使用专门的算法,如A*算法或者基于时间最优的轨迹规划技术,以确保机器人运动的平滑性和效率。此
recommend-type

网络物理突变工具的多点路径规划实现与分析

资源摘要信息:"多点路径规划matlab代码-mutationdocker:变异码头工人" ### 知识点概述 #### 多点路径规划与网络物理突变工具 多点路径规划指的是在网络环境下,对多个路径点进行规划的算法或工具。该工具可能被应用于物流、运输、通信等领域,以优化路径和提升效率。网络物理系统(CPS,Cyber-Physical System)结合了计算机网络和物理过程,其中网络物理突变工具是指能够修改或影响网络物理系统中的软件代码的功能,特别是在自动驾驶、智能电网、工业自动化等应用中。 #### 变异与Mutator软件工具 变异(Mutation)在软件测试领域是指故意对程序代码进行小的改动,以此来检测程序测试用例的有效性。mutator软件工具是一种自动化的工具,它能够在编程文件上执行这些变异操作。在代码质量保证和测试覆盖率的评估中,变异分析是提高软件可靠性的有效方法。 #### Mutationdocker Mutationdocker是一个配置为运行mutator的虚拟机环境。虚拟机环境允许用户在隔离的环境中运行软件,无需对现有系统进行改变,从而保证了系统的稳定性和安全性。Mutationdocker的使用为开发者提供了一个安全的测试平台,可以在不影响主系统的情况下进行变异测试。 #### 工具的五个阶段 网络物理突变工具按照以下五个阶段进行操作: 1. **安装工具**:用户需要下载并构建工具,具体操作步骤可能包括解压文件、安装依赖库等。 2. **生成突变体**:使用`./mutator`命令,顺序执行`./runconfiguration`(如果存在更改的config.txt文件)、`make`和工具执行。这个阶段涉及到对原始程序代码的变异生成。 3. **突变编译**:该步骤可能需要编译运行环境的配置,依赖于项目具体情况,可能需要执行`compilerun.bash`脚本。 4. **突变执行**:通过`runsave.bash`脚本执行变异后的代码。这个脚本的路径可能需要根据项目进行相应的调整。 5. **结果分析**:利用MATLAB脚本对变异过程中的结果进行分析,可能需要参考文档中的文件夹结构部分,以正确引用和处理数据。 #### 系统开源 标签“系统开源”表明该项目是一个开放源代码的系统,意味着它被设计为可供任何人自由使用、修改和分发。开源项目通常可以促进协作、透明性以及通过社区反馈来提高代码质量。 #### 文件名称列表 文件名称列表中提到的`mutationdocker-master`可能是指项目源代码的仓库名,表明这是一个主分支,用户可以从中获取最新的项目代码和文件。 ### 详细知识点 1. **多点路径规划**是网络物理系统中的一项重要技术,它需要考虑多个节点或路径点在物理网络中的分布,以及如何高效地规划它们之间的路径,以满足例如时间、成本、距离等优化目标。 2. **突变测试**是软件测试的一种技术,通过改变程序中的一小部分来生成变异体,这些变异体用于测试软件的测试用例集是否能够检测到这些人为的错误。如果测试用例集能够正确地识别出大多数或全部的变异体,那么可以认为测试用例集是有效的。 3. **Mutator软件工具**的使用可以自动化变异测试的过程,包括变异体的生成、编译、执行和结果分析。使用此类工具可以显著提高测试效率,尤其是在大型项目中。 4. **Mutationdocker的使用**提供了一个简化的环境,允许开发者无需复杂的配置就可以进行变异测试。它可能包括了必要的依赖项和工具链,以便快速开始变异测试。 5. **软件的五个操作阶段**为用户提供了清晰的指导,从安装到结果分析,每个步骤都有详细的说明,这有助于减少用户在使用过程中的困惑,并确保操作的正确性。 6. **开源系统的特性**鼓励了代码共享、共同开发和创新,同时也意味着用户可以通过社区的力量不断改进软件工具,这也是开源项目可持续发展的核心。 通过以上描述和知识点的展开,我们可以了解到多点路径规划matlab代码-mutationdocker:变异码头工人是一个涵盖了网络物理系统、变异测试、自动化软件工具以及开源精神的综合性项目。它通过一系列操作流程为用户提供了一个高效和稳定的代码测试环境,并且以开源的形式促进了软件测试技术的共享和创新。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

自动化缺失值处理脚本编写

![缺失值处理(Missing Value Imputation)](https://img-blog.csdnimg.cn/20190521154527414.PNG?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3l1bmxpbnpp,size_16,color_FFFFFF,t_70) # 1. 自动化缺失值处理概览 在数据科学的实践中,数据分析和建模的一个常见挑战是处理含有缺失值的数据集。缺失值不仅会降低数据的质量,而且可能会导致不准