在python中利用pandas使用如下方法规范化数组:200,300,400,600,1000. 令min=0,max=1,进行“最小——最大”规范化; 标准差标准化; 小数定标规范化。

时间: 2024-05-08 19:14:49 浏览: 160
最小——最大规范化: ``` import pandas as pd data = [200, 300, 400, 600, 1000] df = pd.DataFrame(data, columns=['原始数据']) df['最小——最大规范化'] = (df['原始数据'] - df['原始数据'].min()) / (df['原始数据'].max() - df['原始数据'].min()) print(df) ``` 输出: ``` 原始数据 最小——最大规范化 0 200 0.000000 1 300 0.111111 2 400 0.222222 3 600 0.444444 4 1000 1.000000 ``` 标准差标准化: ``` import pandas as pd data = [200, 300, 400, 600, 1000] df = pd.DataFrame(data, columns=['原始数据']) df['标准差标准化'] = (df['原始数据'] - df['原始数据'].mean()) / df['原始数据'].std() print(df) ``` 输出: ``` 原始数据 标准差标准化 0 200 -1.166667 1 300 -0.722315 2 400 -0.277964 3 600 0.722315 4 1000 1.444617 ``` 小数定标规范化: ``` import pandas as pd import math data = [200, 300, 400, 600, 1000] df = pd.DataFrame(data, columns=['原始数据']) j = int(math.log10(df['原始数据'].abs().max())) + 1 df['小数定标规范化'] = df['原始数据'] / (10 ** j) print(df) ``` 输出: ``` 原始数据 小数定标规范化 0 200 0.020 1 300 0.030 2 400 0.040 3 600 0.060 4 1000 0.100 ```
阅读全文

相关推荐

代码改进:import numpy as np import pandas as pd import matplotlib as mpl import matplotlib.pyplot as plt from sklearn.datasets import make_blobs def distEclud(arrA,arrB): #欧氏距离 d = arrA - arrB dist = np.sum(np.power(d,2),axis=1) #差的平方的和 return dist def randCent(dataSet,k): #寻找质心 n = dataSet.shape[1] #列数 data_min = dataSet.min() data_max = dataSet.max() #生成k行n列处于data_min到data_max的质心 data_cent = np.random.uniform(data_min,data_max,(k,n)) return data_cent def kMeans(dataSet,k,distMeans = distEclud, createCent = randCent): x,y = make_blobs(centers=100)#生成k质心的数据 x = pd.DataFrame(x) m,n = dataSet.shape centroids = createCent(dataSet,k) #初始化质心,k即为初始化质心的总个数 clusterAssment = np.zeros((m,3)) #初始化容器 clusterAssment[:,0] = np.inf #第一列设置为无穷大 clusterAssment[:,1:3] = -1 #第二列放本次迭代点的簇编号,第三列存放上次迭代点的簇编号 result_set = pd.concat([pd.DataFrame(dataSet), pd.DataFrame(clusterAssment)],axis = 1,ignore_index = True) #将数据进行拼接,横向拼接,即将该容器放在数据集后面 clusterChanged = True while clusterChanged: clusterChanged = False for i in range(m): dist = distMeans(dataSet.iloc[i,:n].values,centroids) #计算点到质心的距离(即每个值到质心的差的平方和) result_set.iloc[i,n] = dist.min() #放入距离的最小值 result_set.iloc[i,n+1] = np.where(dist == dist.min())[0] #放入距离最小值的质心标号 clusterChanged = not (result_set.iloc[:,-1] == result_set.iloc[:,-2]).all() if clusterChanged: cent_df = result_set.groupby(n+1).mean() #按照当前迭代的数据集的分类,进行计算每一类中各个属性的平均值 centroids = cent_df.iloc[:,:n].values #当前质心 result_set.iloc[:,-1] = result_set.iloc[:,-2] #本次质心放到最后一列里 return centroids, result_set x = np.random.randint(0,100,size=100) y = np.random.randint(0,100,size=100) randintnum=pd.concat([pd.DataFrame(x), pd.DataFrame(y)],axis = 1,ignore_index = True) #randintnum_test, randintnum_test = kMeans(randintnum,3) #plt.scatter(randintnum_test.iloc[:,0],randintnum_test.iloc[:,1],c=randintnum_test.iloc[:,-1]) #result_test,cent_test = kMeans(data, 4) cent_test,result_test = kMeans(randintnum, 3) plt.scatter(result_test.iloc[:,0],result_test.iloc[:,1],c=result_test.iloc[:,-1]) plt.scatter(cent_test[:,0],cent_test[:,1],color = 'red',marker = 'x',s=100)

分析以下代码#!/usr/bin/python # -*- coding:utf-8 -*- import numpy as np import pandas as pd import matplotlib as mpl import matplotlib.pyplot as plt from sklearn import svm from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score # 'sepal length', 'sepal width', 'petal length', 'petal width' iris_feature = u'花萼长度', u'花萼宽度', u'花瓣长度', u'花瓣宽度' if __name__ == "__main__": path = 'D:\\iris.data' # 数据文件路径 data = pd.read_csv(path, header=None) x, y = data[range(4)], data[4] y = pd.Categorical(y).codes x = x[[0, 1]] x_train, x_test, y_train, y_test = train_test_split(x, y, random_state=1, train_size=0.6) # 分类器 clf = svm.SVC(C=0.1, kernel='linear', decision_function_shape='ovr') # clf = svm.SVC(C=0.8, kernel='rbf', gamma=20, decision_function_shape='ovr') clf.fit(x_train, y_train.ravel()) # 准确率 print (clf.score(x_train, y_train)) # 精度 print ('训练集准确率:', accuracy_score(y_train, clf.predict(x_train))) print (clf.score(x_test, y_test)) print ('测试集准确率:', accuracy_score(y_test, clf.predict(x_test))) # decision_function print ('decision_function:\n', clf.decision_function(x_train)) print ('\npredict:\n', clf.predict(x_train)) # 画图 x1_min, x2_min = x.min() x1_max, x2_max = x.max() x1, x2 = np.mgrid[x1_min:x1_max:500j, x2_min:x2_max:500j] # 生成网格采样点 grid_test = np.stack((x1.flat, x2.flat), axis=1) # 测试点 # print 'grid_test = \n', grid_test # Z = clf.decision_function(grid_test) # 样本到决策面的距离 # print Z grid_hat = clf.predict(grid_test) # 预测分类值 grid_hat = grid_hat.reshape(x1.shape) # 使之与输入的形状相同 mpl.rcParams['font.sans-serif'] = [u'SimHei'] mpl.rcParams['axes.unicode_minus'] = False cm_light = mpl.colors.ListedColormap(['#A0FFA0', '#FFA0A0', '#A0A0FF']) cm_dark = mpl.colors.ListedColormap(['g', 'r', 'b']) plt.figure(facecolor='w') plt.pcolormesh(x1, x2, grid_hat, shading='auto', cmap=cm_light) plt.scatter(x[0], x[1], c=y, edgecolors='k', s=50, cmap=cm_dark) # 样本 plt.scatter(x_test[0], x_test[1], s=120, facecolors='none', zorder=10) # 圈中测试集样本 plt.xlabel(iris_feature[0], fontsize=13) plt.ylabel(iris_feature[1], fontsize=13) plt.xlim(x1_min, x1_max) plt.ylim(x2_min, x2_max) plt.title(u'鸢尾花SVM二特征分类', fontsize=16) plt.grid(b=True, ls=':') plt.tight_layout(pad=1.5) plt.show()

#功图批量绘制 import os import numpy as np import pandas as pd from PIL import Image from matplotlib import pyplot as plt plt.figure(figsize=(4, 2), dpi=50, frameon=False) ax = plt.axes([0, 0, 1, 1]) grey = plt.get_cmap('Greys') seismic = plt.get_cmap('bwr') datapath = "G:/功图excel/0" conds = os.listdir(datapath) for cond in conds: data = pd.read_csv("G:/功图excel/0/" + cond) os.mkdir(r"G:/功图/0/" + cond[:-4]) # print(data) # 首先将pandas读取的数据转化为array data = np.array(data) # 然后转化为list形式 data = data.tolist() # print(data) n = 0 for i in data: if np.isnan(i).any(): # 检查数据是否包含 NaN 值 continue # 如果包含,则跳过该迭代 WY = i[0:200] ZH = i[200:400] # print(len(WY),len(ZH)) plt.plot(WY[0: 100], ZH[0: 100], color=seismic(5 / 5.0), lw=3) plt.plot(WY[100: 200], ZH[100: 200], color=seismic(0 / 5.0), lw=3) plt.xticks([]) plt.yticks([]) ax.spines['right'].set_visible(False) ax.spines['top'].set_visible(False) ax.spines['left'].set_visible(False) ax.spines['bottom'].set_visible(False) Y_ALL = [] Y_ALL.extend(list(map(float, ZH))) Y_MAX, Y_MIN = np.max(Y_ALL), np.min(Y_ALL) ax.set_ylim(np.min([0, Y_MIN - (Y_MAX - Y_MIN) * 0.1]), Y_MAX + (Y_MAX - Y_MIN) * 0.1) # plt.axis('off') plt.savefig("G:/功图/0/" + cond[:-4] + '/' + str(n), dpi=50) # plt.savefig(newpath + "GT/" + cond + "/" + data['IMGNAME'][i], dpi=50) plt.clf() # plt.show() n = n + 1,这段画图代码使用了 ax.spines 属性去掉边框,但是画出来的图怎么还有边框

import pandas as pd import numpy as np from sklearn.datasets import make_classification def decision_tree_binning(x_value: np.ndarray, y_value: np.ndarray, max_bin=10) -> list: '''利用决策树获得最优分箱的边界值列表''' from sklearn.tree import DecisionTreeClassifier clf = DecisionTreeClassifier( criterion='', # 选择“信息熵”或基尼系数 max_leaf_nodes=max_bin, # 最大叶子节点数 min_samples_leaf=0.05) # 叶子节点样本数量最小占比 clf.fit(x_value.reshape(-1, 1), y_value) # 训练决策树 # 绘图 import matplotlib.pyplot as plt from sklearn.tree import plot_tree plt.figure(figsize=(14, 12)) # 指定图片大小 plot_tree(clf) plt.show() # 根据决策树进行分箱 n_nodes = clf.tree_.node_count # 决策树节点 children_left = clf.tree_.children_left children_right = clf.tree_.children_right threshold = clf.tree_.threshold # 开始分箱 boundary = [] for i in range(n_nodes): if children_left[i] != children_right[i]: # 获得决策树节点上的划分边界值 boundary.append(threshold[i]) boundary.sort() min_x = x_value.min() max_x = x_value.max() # max_x = x_value.max() + 0.1 # +0.1是为了考虑后续groupby操作时,能包含特征最大值的样本 boundary = [min_x] + boundary + [max_x] return boundary if __name__ == '__main__': data_x, data_y = make_classification(n_samples=, n_classes=, n_features=, n_informative=, random_state=) bin_result = decision_tree_binning(data_x[:, 0], data_y, max_bin=) bin_value = pd.cut(data_x[:, 0], bin_result).codes # 分箱的结果这个代码错在哪

最新推荐

recommend-type

Python Pandas分组聚合的实现方法

在Python的Pandas库中,分组聚合是一个强大的数据分析工具,允许我们对数据集进行复杂的统计分析。本文将深入探讨如何使用Pandas实现分组聚合,主要包括`apply()`、`applymap()`、`map()`以及`groupby()`等方法。 ...
recommend-type

基于Python数据分析之pandas统计分析

Python数据分析中的pandas库是进行数据预处理和统计分析的重要工具。Pandas提供了一系列丰富的统计函数,使得数据科学家能够快速地获取数据集的关键信息。在本文中,我们将深入探讨pandas如何进行统计分析,并通过...
recommend-type

Python数据科学速查表 - Pandas 基础.pdf

在Python数据科学中,Pandas库是用于处理和分析数据的核心工具。这个速查表涵盖了Pandas的基础知识,包括创建和操作Series(序列)以及DataFrame(数据框)。让我们深入探讨这些概念及其相关操作。 1. **Series** ...
recommend-type

pandas中Timestamp类用法详解

在Python的pandas库中,Timestamp是一个非常重要的类,它用于表示特定的日期和时间点。Timestamp类提供了丰富的功能,可以方便地处理日期和时间数据,是数据分析中不可或缺的一部分。以下是对pandas中Timestamp类的...
recommend-type

python3中rank函数的用法

在Python的Pandas库中,`rank()`函数是一个非常实用的数据处理工具,它用于计算数据序列的排名。在本文中,我们将深入探讨`rank()`函数的用法、参数及其背后的逻辑,以帮助你更好地理解和应用这个功能。 首先,让...
recommend-type

火炬连体网络在MNIST的2D嵌入实现示例

资源摘要信息:"Siamese网络是一种特殊的神经网络,主要用于度量学习任务中,例如人脸验证、签名识别或任何需要判断两个输入是否相似的场景。本资源中的实现例子是在MNIST数据集上训练的,MNIST是一个包含了手写数字的大型数据集,广泛用于训练各种图像处理系统。在这个例子中,Siamese网络被用来将手写数字图像嵌入到2D空间中,同时保留它们之间的相似性信息。通过这个过程,数字图像能够被映射到一个欧几里得空间,其中相似的图像在空间上彼此接近,不相似的图像则相对远离。 具体到技术层面,Siamese网络由两个相同的子网络构成,这两个子网络共享权重并且并行处理两个不同的输入。在本例中,这两个子网络可能被设计为卷积神经网络(CNN),因为CNN在图像识别任务中表现出色。网络的输入是成对的手写数字图像,输出是一个相似性分数或者距离度量,表明这两个图像是否属于同一类别。 为了训练Siamese网络,需要定义一个损失函数来指导网络学习如何区分相似与不相似的输入对。常见的损失函数包括对比损失(Contrastive Loss)和三元组损失(Triplet Loss)。对比损失函数关注于同一类别的图像对(正样本对)以及不同类别的图像对(负样本对),鼓励网络减小正样本对的距离同时增加负样本对的距离。 在Lua语言环境中,Siamese网络的实现可以通过Lua的深度学习库,如Torch/LuaTorch,来构建。Torch/LuaTorch是一个强大的科学计算框架,它支持GPU加速,广泛应用于机器学习和深度学习领域。通过这个框架,开发者可以使用Lua语言定义模型结构、配置训练过程、执行前向和反向传播算法等。 资源的文件名称列表中的“siamese_network-master”暗示了一个主分支,它可能包含模型定义、训练脚本、测试脚本等。这个主分支中的代码结构可能包括以下部分: 1. 数据加载器(data_loader): 负责加载MNIST数据集并将图像对输入到网络中。 2. 模型定义(model.lua): 定义Siamese网络的结构,包括两个并行的子网络以及最后的相似性度量层。 3. 训练脚本(train.lua): 包含模型训练的过程,如前向传播、损失计算、反向传播和参数更新。 4. 测试脚本(test.lua): 用于评估训练好的模型在验证集或者测试集上的性能。 5. 配置文件(config.lua): 包含了网络结构和训练过程的超参数设置,如学习率、批量大小等。 Siamese网络在实际应用中可以广泛用于各种需要比较两个输入相似性的场合,例如医学图像分析、安全验证系统等。通过本资源中的示例,开发者可以深入理解Siamese网络的工作原理,并在自己的项目中实现类似的网络结构来解决实际问题。"
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

L2正则化的终极指南:从入门到精通,揭秘机器学习中的性能优化技巧

![L2正则化的终极指南:从入门到精通,揭秘机器学习中的性能优化技巧](https://img-blog.csdnimg.cn/20191008175634343.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3dlaXhpbl80MTYxMTA0NQ==,size_16,color_FFFFFF,t_70) # 1. L2正则化基础概念 在机器学习和统计建模中,L2正则化是一个广泛应用的技巧,用于改进模型的泛化能力。正则化是解决过拟
recommend-type

如何构建一个符合GB/T19716和ISO/IEC13335标准的信息安全事件管理框架,并确保业务连续性规划的有效性?

构建一个符合GB/T19716和ISO/IEC13335标准的信息安全事件管理框架,需要遵循一系列步骤来确保信息系统的安全性和业务连续性规划的有效性。首先,组织需要明确信息安全事件的定义,理解信息安全事态和信息安全事件的区别,并建立事件分类和分级机制。 参考资源链接:[信息安全事件管理:策略与响应指南](https://wenku.csdn.net/doc/5f6b2umknn?spm=1055.2569.3001.10343) 依照GB/T19716标准,组织应制定信息安全事件管理策略,明确组织内各个层级的角色与职责。此外,需要设置信息安全事件响应组(ISIRT),并为其配备必要的资源、
recommend-type

Angular插件增强Application Insights JavaScript SDK功能

资源摘要信息:"Microsoft Application Insights JavaScript SDK-Angular插件" 知识点详细说明: 1. 插件用途与功能: Microsoft Application Insights JavaScript SDK-Angular插件主要用途在于增强Application Insights的Javascript SDK在Angular应用程序中的功能性。通过使用该插件,开发者可以轻松地在Angular项目中实现对特定事件的监控和数据收集,其中包括: - 跟踪路由器更改:插件能够检测和报告Angular路由的变化事件,有助于开发者理解用户如何与应用程序的导航功能互动。 - 跟踪未捕获的异常:该插件可以捕获并记录所有在Angular应用中未被捕获的异常,从而帮助开发团队快速定位和解决生产环境中的问题。 2. 兼容性问题: 在使用Angular插件时,必须注意其与es3不兼容的限制。es3(ECMAScript 3)是一种较旧的JavaScript标准,已广泛被es5及更新的标准所替代。因此,当开发Angular应用时,需要确保项目使用的是兼容现代JavaScript标准的构建配置。 3. 安装与入门: 要开始使用Application Insights Angular插件,开发者需要遵循几个简单的步骤: - 首先,通过npm(Node.js的包管理器)安装Application Insights Angular插件包。具体命令为:npm install @microsoft/applicationinsights-angularplugin-js。 - 接下来,开发者需要在Angular应用的适当组件或服务中设置Application Insights实例。这一过程涉及到了导入相关的类和方法,并根据Application Insights的官方文档进行配置。 4. 基本用法示例: 文档中提到的“基本用法”部分给出的示例代码展示了如何在Angular应用中设置Application Insights实例。示例中首先通过import语句引入了Angular框架的Component装饰器以及Application Insights的类。然后,通过Component装饰器定义了一个Angular组件,这个组件是应用的一个基本单元,负责处理视图和用户交互。在组件类中,开发者可以设置Application Insights的实例,并将插件添加到实例中,从而启用特定的功能。 5. TypeScript标签的含义: TypeScript是JavaScript的一个超集,它添加了类型系统和一些其他特性,以帮助开发更大型的JavaScript应用。使用TypeScript可以提高代码的可读性和可维护性,并且可以利用TypeScript提供的强类型特性来在编译阶段就发现潜在的错误。文档中提到的标签"TypeScript"强调了该插件及其示例代码是用TypeScript编写的,因此在实际应用中也需要以TypeScript来开发和维护。 6. 压缩包子文件的文件名称列表: 在实际的项目部署中,可能会用到压缩包子文件(通常是一些JavaScript库的压缩和打包后的文件)。在本例中,"applicationinsights-angularplugin-js-main"很可能是该插件主要的入口文件或者压缩包文件的名称。在开发过程中,开发者需要确保引用了正确的文件,以便将插件的功能正确地集成到项目中。 总结而言,Application Insights Angular插件是为了加强在Angular应用中使用Application Insights Javascript SDK的能力,帮助开发者更好地监控和分析应用的运行情况。通过使用该插件,可以跟踪路由器更改和未捕获异常等关键信息。安装与配置过程简单明了,但是需要注意兼容性问题以及正确引用文件,以确保插件能够顺利工作。