基于yolov3的红绿灯检测
时间: 2023-10-05 21:07:37 浏览: 146
红绿灯检测yolov5模型,输出4种类别
红绿灯检测是计算机视觉中的一个经典问题,可以应用于自动驾驶、交通监管等领域。基于YOLOv3的红绿灯检测可以实现实时的目标检测,下面是一个基于YOLOv3的红绿灯检测的示例代码:
```
import cv2
import numpy as np
# Load YOLOv3 weights and configuration files
net = cv2.dnn.readNet("yolov3.weights", "yolov3.cfg")
# Load classes
classes = []
with open("coco.names", "r") as f:
classes = [line.strip() for line in f.readlines()]
# Set input and output layers
layer_names = net.getLayerNames()
output_layers = [layer_names[i[0] - 1] for i in net.getUnconnectedOutLayers()]
# Load image
img = cv2.imread("traffic.jpg")
# Resize image
img = cv2.resize(img, None, fx=0.4, fy=0.4)
# Convert image to blob
blob = cv2.dnn.blobFromImage(img, 1/255.0, (416, 416), swapRB=True, crop=False)
# Set input to network
net.setInput(blob)
# Forward pass
outputs = net.forward(output_layers)
# Process outputs
boxes = []
confidences = []
class_ids = []
for output in outputs:
for detection in output:
scores = detection[5:]
class_id = np.argmax(scores)
confidence = scores[class_id]
if confidence > 0.5 and class_id == 9:
center_x = int(detection[0] * img.shape[1])
center_y = int(detection[1] * img.shape[0])
w = int(detection[2] * img.shape[1])
h = int(detection[3] * img.shape[0])
x = int(center_x - w / 2)
y = int(center_y - h / 2)
boxes.append([x, y, w, h])
confidences.append(float(confidence))
class_ids.append(class_id)
# Apply non-max suppression
indices = cv2.dnn.NMSBoxes(boxes, confidences, 0.5, 0.4)
# Draw boxes and labels
for i in indices:
i = i[0]
box = boxes[i]
x, y, w, h = box
cv2.rectangle(img, (x, y), (x + w, y + h), (0, 255, 0), 2)
# Display image
cv2.imshow("Image", img)
cv2.waitKey(0)
cv2.destroyAllWindows()
```
这段代码使用了YOLOv3目标检测网络来检测图像中的红绿灯,其中:
- `cv2.dnn.readNet`函数用于加载YOLOv3网络的权重和配置文件;
- `cv2.dnn.blobFromImage`函数用于将图像转换为网络输入的blob格式;
- `net.setInput`函数用于将blob作为网络的输入;
- `net.forward`函数用于进行前向传播,得到网络的输出;
- `cv2.dnn.NMSBoxes`函数用于对网络输出进行非极大值抑制,得到目标框;
- 最后使用`cv2.rectangle`函数将目标框画在图像上。
需要注意的是,上述代码是基于COCO数据集训练的YOLOv3模型,因此`classes`中包含了80个目标类别。在这里,我们只需要检测红绿灯,因此需要将目标类别为9的目标框保留下来。另外,由于YOLOv3网络的输出是一个张量,需要对张量进行处理才能得到目标框的坐标。
阅读全文