写一段WGAN代码,用于解决结构化数据的样本不均衡问题
时间: 2023-04-02 14:01:44 浏览: 130
test_smote_SMOTE代码_数据不均衡问题_
5星 · 资源好评率100%
以下是一个简单的 WGAN 代码示例,用于解决结构化数据的样本不均衡问题:
```python
import tensorflow as tf
from tensorflow.keras import layers
# 定义生成器模型
def make_generator_model():
model = tf.keras.Sequential()
model.add(layers.Dense(256, use_bias=False, input_shape=(100,)))
model.add(layers.BatchNormalization())
model.add(layers.LeakyReLU())
model.add(layers.Dense(512, use_bias=False))
model.add(layers.BatchNormalization())
model.add(layers.LeakyReLU())
model.add(layers.Dense(1024, use_bias=False))
model.add(layers.BatchNormalization())
model.add(layers.LeakyReLU())
model.add(layers.Dense(1, activation='tanh'))
return model
# 定义判别器模型
def make_discriminator_model():
model = tf.keras.Sequential()
model.add(layers.Dense(1024, input_shape=(784,)))
model.add(layers.LeakyReLU())
model.add(layers.Dropout(.3))
model.add(layers.Dense(512))
model.add(layers.LeakyReLU())
model.add(layers.Dropout(.3))
model.add(layers.Dense(256))
model.add(layers.LeakyReLU())
model.add(layers.Dropout(.3))
model.add(layers.Dense(1))
return model
# 定义 WGAN 模型
class WGAN(tf.keras.Model):
def __init__(
self,
discriminator,
generator,
latent_dim,
discriminator_extra_steps=3,
gp_weight=10.,
):
super(WGAN, self).__init__()
self.discriminator = discriminator
self.generator = generator
self.latent_dim = latent_dim
self.d_steps = discriminator_extra_steps
self.gp_weight = gp_weight
# 定义判别器损失函数
def discriminator_loss(self, real, fake, interpolated):
real_loss = tf.reduce_mean(real)
fake_loss = tf.reduce_mean(fake)
gradient_penalty = self.gradient_penalty(interpolated)
return fake_loss - real_loss + gradient_penalty * self.gp_weight
# 定义生成器损失函数
def generator_loss(self, fake):
return -tf.reduce_mean(fake)
# 定义梯度惩罚函数
def gradient_penalty(self, interpolated):
with tf.GradientTape() as tape:
tape.watch(interpolated)
pred = self.discriminator(interpolated)
gradients = tape.gradient(pred, interpolated)
norm = tf.norm(tf.reshape(gradients, [tf.shape(gradients)[], -1]), axis=1)
gp = tf.reduce_mean((norm - 1.) ** 2)
return gp
# 定义训练步骤
@tf.function
def train_step(self, real_data):
# 生成随机噪声
batch_size = tf.shape(real_data)[]
noise = tf.random.normal([batch_size, self.latent_dim])
# 训练判别器
for i in range(self.d_steps):
with tf.GradientTape() as tape:
fake_data = self.generator(noise)
interpolated = real_data + tf.random.uniform(
tf.shape(real_data), minval=., maxval=1.
) * (fake_data - real_data)
real_pred = self.discriminator(real_data)
fake_pred = self.discriminator(fake_data)
disc_loss = self.discriminator_loss(real_pred, fake_pred, interpolated)
grads = tape.gradient(disc_loss, self.discriminator.trainable_weights)
self.discriminator.optimizer.apply_gradients(
zip(grads, self.discriminator.trainable_weights)
)
# 训练生成器
with tf.GradientTape() as tape:
fake_data = self.generator(noise)
fake_pred = self.discriminator(fake_data)
gen_loss = self.generator_loss(fake_pred)
grads = tape.gradient(gen_loss, self.generator.trainable_weights)
self.generator.optimizer.apply_gradients(
zip(grads, self.generator.trainable_weights)
)
return {"d_loss": disc_loss, "g_loss": gen_loss}
# 加载数据集
(train_images, train_labels), (_, _) = tf.keras.datasets.mnist.load_data()
train_images = train_images.reshape(train_images.shape[], 784).astype("float32")
train_images = (train_images - 127.5) / 127.5 # 将像素值归一化到[-1, 1]之间
# 定义超参数
BUFFER_SIZE = 60000
BATCH_SIZE = 64
EPOCHS = 50
LATENT_DIM = 100
# 创建数据集
train_dataset = tf.data.Dataset.from_tensor_slices(train_images).shuffle(BUFFER_SIZE).batch(BATCH_SIZE)
# 创建模型
generator = make_generator_model()
discriminator = make_discriminator_model()
# 定义优化器
generator_optimizer = tf.keras.optimizers.Adam(1e-4)
discriminator_optimizer = tf.keras.optimizers.Adam(1e-4)
# 创建 WGAN 模型
wgan = WGAN(
discriminator=discriminator,
generator=generator,
latent_dim=LATENT_DIM,
discriminator_extra_steps=3,
gp_weight=10.,
)
# 训练模型
for epoch in range(EPOCHS):
for real_data in train_dataset:
wgan.train_step(real_data)
# 打印损失
d_loss = wgan.trainable_variables["d_loss"].numpy()
g_loss = wgan.trainable_variables["g_loss"].numpy()
print(f"Epoch {epoch+1}, Discriminator loss: {d_loss}, Generator loss: {g_loss}")
```
注意:这只是一个简单的示例,实际应用中需要根据具体问题进行调整和优化。
阅读全文