xgb_reg.fit(trainX, trainY, eval_set=[(trainX, trainY),(testX, testY)],early_stopping_rounds=30,verbose=5,eval_metric='auc')
时间: 2023-10-06 09:09:19 浏览: 64
这是一个使用XGBoost库进行回归训练的代码。其中trainX和trainY是训练数据集的特征和标签,testX和testY是测试数据集的特征和标签。eval_set参数用于设置模型的验证集,其中第一个元组(trainX,trainY)表示训练集上的验证,第二个元组(testX,testY)表示测试集上的验证。early_stopping_rounds参数表示在模型在验证集上停止提升的轮数,verbose参数表示打印训练过程的详细程度,eval_metric参数表示模型评价指标为auc。
相关问题
xgb_reg = XGBRegressor(**xgb_params) xgb_reg.fit(x_train, y_train, early_stopping_rounds=10, eval_set=[(x_val, y_val)], verbose=False) val_loss = xgb_reg.evals_result()['validation_0']['rmse'][-1] return val_loss
看起来这是一个使用XGBoost库进行回归训练的函数,函数的输入包括训练数据集x_train和y_train,以及验证数据集x_val和y_val。函数中使用了XGBRegressor类初始化模型,通过指定超参数xgb_params来进行训练,并使用early_stopping_rounds参数进行早停。最后,将验证集上的均方根误差rmse作为函数的输出返回。
xgb_classifier = XGBClassifier() label_encoder = LabelEncoder() label_encoder.fit(train_labels) train_labels_encoded = label_encoder.transform(train_labels) test_labels_encoded = label_encoder.transform(test_labels) xgb_classifier.fit(feature_matrix, train_labels_encoded) xgb_pred = xgb_classifier.predict(test_tfidf) xgb_acc = accuracy(labels_true=test_labels, labels_pred=xgb_pred) micro_F1 = f1_score(test_labels_encoded, xgb_pred, average='micro') macro_f1 = f1_score(test_labels_encoded, xgb_pred, average='macro') print("XGBoost分类准确率: %.4f, micro_F1: %.4f, macro_f1值: %.4f" % (xgb_acc, micro_F1, macro_f1))代码翻译
这段代码使用了XGBoost分类器进行分类任务。首先创建了一个XGBClassifier对象,然后采用LabelEncoder进行标签的编码。训练数据的标签通过label_encoder进行编码,测试数据的标签也同样进行编码。接着将特征矩阵和训练标签数据传入xgb_classifier进行训练。使用训练好的模型对测试数据的tf-idf矩阵进行预测,得到了xgb_pred。通过accuracy函数计算分类器的准确率(xgb_acc),并使用f1_score函数计算了micro_f1和macro_f1值。最后输出了分类准确率、micro_f1和macro_f1值。
阅读全文