dataframe遍历每一行
时间: 2023-09-19 22:10:16 浏览: 39
可以使用iterrows()方法遍历DataFrame中的每一行,例如:
```python
import pandas as pd
df = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6], 'C': [7, 8, 9]})
for index, row in df.iterrows():
print(row['A'], row['B'], row['C'])
```
这将输出DataFrame中每一行的'A'、'B'和'C'列的值。注意,iterrows()方法返回一个元组,其中第一个元素是行索引,第二个元素是包含每一列的值的Series对象。
相关问题
dataframe遍历每个元素
可以使用`iterrows()`方法来遍历DataFrame中的每一行,然后使用`iteritems()`方法来遍历每一行中的每一个元素。
例如,假设有以下DataFrame:
```
import pandas as pd
df = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6], 'C': [7, 8, 9]})
```
则可以使用以下代码遍历每一个元素:
```
for index, row in df.iterrows():
for column, value in row.iteritems():
print(f"Element at ({index}, {column}) is {value}")
```
输出结果如下:
```
Element at (0, A) is 1
Element at (0, B) is 4
Element at (0, C) is 7
Element at (1, A) is 2
Element at (1, B) is 5
Element at (1, C) is 8
Element at (2, A) is 3
Element at (2, B) is 6
Element at (2, C) is 9
```
阅读全文
相关推荐
![-](https://img-home.csdnimg.cn/images/20241231044930.png)
![-](https://img-home.csdnimg.cn/images/20250102104920.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![pdf](https://img-home.csdnimg.cn/images/20241231044930.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![pptx](https://img-home.csdnimg.cn/images/20241231044947.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)