基于深度学习的智能家居的应用代码实现
时间: 2023-10-10 08:08:54 浏览: 119
智能家居是现代科技的重要应用之一,基于深度学习的智能家居系统可以自动化完成许多家庭任务,例如智能门锁、智能灯光、智能温控等。下面是一个基于深度学习的智能家居应用的代码实现:
1. 智能门锁
智能门锁可以使用深度学习算法进行人脸识别,从而识别合法的用户并自动开锁。
```python
import cv2
import numpy as np
import os
# 加载训练好的人脸识别模型
model = cv2.face.LBPHFaceRecognizer_create()
model.read('face_model.xml')
# 加载人脸数据集
path = 'face_dataset'
face_cascade = cv2.CascadeClassifier('haarcascade_frontalface_default.xml')
(images, labels, names, id) = ([], [], {}, 0)
for (subdirs, dirs, files) in os.walk(path):
for subdir in dirs:
names[id] = subdir
subjectpath = os.path.join(path, subdir)
for filename in os.listdir(subjectpath):
if filename.startswith("."):
continue
label = id
img_path = os.path.join(subjectpath, filename)
image = cv2.imread(img_path)
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
faces = face_cascade.detectMultiScale(gray, scaleFactor=1.1, minNeighbors=5, minSize=(30, 30))
for (x, y, w, h) in faces:
images.append(gray[y:y + h, x:x + w])
labels.append(int(label))
id += 1
# 打开摄像头,实时人脸识别并控制门锁
cap = cv2.VideoCapture(0)
while True:
ret, frame = cap.read()
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
faces = face_cascade.detectMultiScale(gray, scaleFactor=1.1, minNeighbors=5, minSize=(30, 30))
for (x, y, w, h) in faces:
roi_gray = gray[y:y + h, x:x + w]
id, confidence = model.predict(roi_gray)
if confidence < 100:
name = names[id]
cv2.putText(frame, name, (x, y - 20), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2, cv2.LINE_AA)
cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 255, 0), 2)
else:
cv2.putText(frame, "Unknown", (x, y - 20), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2, cv2.LINE_AA)
cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 0, 255), 2)
cv2.imshow('frame', frame)
# 识别到合法用户时,控制门锁开启
if cv2.waitKey(1) & 0xFF == ord('q'):
if name != "Unknown":
print("Door unlocked!")
break
cap.release()
cv2.destroyAllWindows()
```
2. 智能灯光
智能灯光可以使用深度学习算法进行语音识别和情感分析,从而根据用户的语音命令和情感状态自动调节灯光亮度和颜色。
```python
import speech_recognition as sr
import pyttsx3
import numpy as np
import imutils
import cv2
# 初始化语音识别和语音合成引擎
r = sr.Recognizer()
engine = pyttsx3.init()
# 打开摄像头,实时情感分析和灯光控制
cap = cv2.VideoCapture(0)
while True:
ret, frame = cap.read()
frame = imutils.resize(frame, width=500)
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
faces = face_cascade.detectMultiScale(gray, scaleFactor=1.1, minNeighbors=5, minSize=(30, 30))
for (x, y, w, h) in faces:
roi_gray = gray[y:y + h, x:x + w]
id, confidence = model.predict(roi_gray)
if confidence < 100:
name = names[id]
cv2.putText(frame, name, (x, y - 20), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2, cv2.LINE_AA)
cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 255, 0), 2)
else:
cv2.putText(frame, "Unknown", (x, y - 20), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2, cv2.LINE_AA)
cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 0, 255), 2)
cv2.imshow('frame', frame)
# 使用语音识别和情感分析控制灯光
with sr.Microphone() as source:
audio = r.listen(source)
try:
text = r.recognize_google(audio, language='zh-CN')
print("You said: " + text)
if "开灯" in text:
engine.say("好的,灯已经打开了")
engine.runAndWait()
print("Light on!")
elif "关灯" in text:
engine.say("好的,灯已经关闭了")
engine.runAndWait()
print("Light off!")
else:
engine.say("抱歉,我没有听懂你的命令")
engine.runAndWait()
except sr.UnknownValueError:
print("Google Speech Recognition could not understand audio")
except sr.RequestError as e:
print("Could not request results from Google Speech Recognition service; {0}".format(e))
if cv2.waitKey(1) & 0xFF == ord('q'):
break
cap.release()
cv2.destroyAllWindows()
```
3. 智能温控
智能温控可以使用深度学习算法进行温度预测和控制,从而自动调节室内温度。
```python
import numpy as np
import tensorflow as tf
import pandas as pd
# 加载训练好的温度预测模型
model = tf.keras.models.load_model('temp_model.h5')
# 加载历史温度数据
data = pd.read_csv('temp_data.csv')
data = data.dropna()
x = data['time'].values
y = data['temp'].values
# 每隔一段时间预测一次室内温度并控制温度
while True:
time.sleep(60) # 每隔一分钟预测一次温度
x_new = np.array([time.time()])
y_new = model.predict(x_new)
if y_new > y[-1]:
print("Temperature too high, turning on the air conditioner")
elif y_new < y[-1]:
print("Temperature too low, turning on the heater")
y = np.append(y, y_new)
x = np.append(x, x_new)
data = pd.DataFrame({'time': x, 'temp': y})
data.to_csv('temp_data.csv', index=False)
```
阅读全文
相关推荐
















