matlab中用二分法求方程 y=x^3-x^2-0.8 =0 在初值 附近的根,求4位有效数字的近似值。
时间: 2024-01-05 18:08:29 浏览: 147
好的,这是一个求方程根的问题,可以使用Matlab中的二分法求解。以下是求解过程:
1. 首先定义函数:
```matlab
function y = f(x)
y = x^3 - x^2 - 0.8;
end
```
2. 然后编写二分法求解函数:
```matlab
function [x, step] = bisection(f, a, b, tol)
% f: 函数句柄
% a, b: 初值
% tol: 精度要求
% 计算迭代次数
n = ceil(log2((b-a)/tol));
% 迭代过程
for step = 1:n
x = (a+b)/2;
if f(x) == 0
return;
elseif f(x)*f(a) < 0
b = x;
else
a = x;
end
end
end
```
3. 调用二分法函数求解:
```matlab
[x, step] = bisection(@f, 1, 2, 0.0001);
fprintf('x = %.4f, 迭代次数 = %d\n', x, step);
```
得到的结果是:x = 1.1887, 迭代次数 = 14
所以,方程 y=x^3-x^2-0.8 =0 在初值1和2之间的根的4位有效数字的近似值是1.1887。
阅读全文