利用C++,根据点云图提取车厢和车头的方法和代码
时间: 2024-05-12 17:17:27 浏览: 202
由于问题的描述比较简洁,以下是一种基础的点云分割方法,可根据实际情况进行调整和优化。
1. 点云预处理
将点云数据转换为pcl::PointCloud<pcl::PointXYZ>格式,并进行下采样和滤波处理,去除离群点和噪声。
2. 车头车厢分割
通过RANSAC算法对点云进行平面拟合,得到车头和车厢的平面模型。
以车头为例,代码如下:
```
pcl::SACSegmentation<pcl::PointXYZ> seg;
seg.setOptimizeCoefficients (true);
seg.setModelType (pcl::SACMODEL_PLANE);
seg.setMethodType (pcl::SAC_RANSAC);
seg.setMaxIterations (1000);
seg.setDistanceThreshold (0.01);
pcl::ModelCoefficients::Ptr coefficients (new pcl::ModelCoefficients);
pcl::PointIndices::Ptr inliers (new pcl::PointIndices);
seg.setInputCloud (cloud);
seg.segment (*inliers, *coefficients);
if (inliers->indices.size () == 0)
{
PCL_ERROR ("Could not estimate a planar model for the given dataset.");
return (-1);
}
//车头平面模型方程:ax + by + cz + d = 0
float a = coefficients->values[0];
float b = coefficients->values[1];
float c = coefficients->values[2];
float d = coefficients->values[3];
```
3. 点云分割
通过计算点到平面的距离,将点云分为车头和车厢两部分。
以车头为例,代码如下:
```
pcl::ExtractIndices<pcl::PointXYZ> extract;
extract.setInputCloud (cloud);
extract.setIndices (inliers);
pcl::PointCloud<pcl::PointXYZ>::Ptr plane_cloud (new pcl::PointCloud<pcl::PointXYZ>);
extract.filter (*plane_cloud);
pcl::PointCloud<pcl::PointXYZ>::Ptr nonplane_cloud (new pcl::PointCloud<pcl::PointXYZ>);
for (int i = 0; i < cloud->points.size(); i++) {
Eigen::Vector3f point(cloud->points[i].x, cloud->points[i].y, cloud->points[i].z);
float dist = std::abs(point.dot(Eigen::Vector3f(a, b, c)) + d) / std::sqrt(a*a + b*b + c*c);
if (dist > threshold) {
nonplane_cloud->points.push_back(cloud->points[i]);
}
}
```
其中,threshold为阈值,用于控制点云分割的精度。
4. 可视化
通过可视化工具(如pcl::visualization::PCLVisualizer)将车头和车厢的点云分别显示出来,以便进行进一步分析和处理。
完整代码如下:
```
#include <iostream>
#include <pcl/io/pcd_io.h>
#include <pcl/point_types.h>
#include <pcl/filters/voxel_grid.h>
#include <pcl/filters/passthrough.h>
#include <pcl/filters/statistical_outlier_removal.h>
#include <pcl/segmentation/sac_segmentation.h>
#include <pcl/segmentation/extract_indices.h>
#include <pcl/visualization/pcl_visualizer.h>
int main (int argc, char** argv)
{
// 读取点云数据
pcl::PointCloud<pcl::PointXYZ>::Ptr cloud (new pcl::PointCloud<pcl::PointXYZ>);
pcl::io::loadPCDFile<pcl::PointXYZ> ("input.pcd", *cloud);
// 下采样
pcl::VoxelGrid<pcl::PointXYZ> sor;
sor.setInputCloud (cloud);
sor.setLeafSize (0.01f, 0.01f, 0.01f);
sor.filter (*cloud);
// 滤波
pcl::PassThrough<pcl::PointXYZ> pass;
pass.setInputCloud (cloud);
pass.setFilterFieldName ("z");
pass.setFilterLimits (0.0, 1.0);
pass.filter (*cloud);
pcl::StatisticalOutlierRemoval<pcl::PointXYZ> sor2;
sor2.setInputCloud (cloud);
sor2.setMeanK (50);
sor2.setStddevMulThresh (1.0);
sor2.filter (*cloud);
// 车头平面拟合
pcl::SACSegmentation<pcl::PointXYZ> seg;
seg.setOptimizeCoefficients (true);
seg.setModelType (pcl::SACMODEL_PLANE);
seg.setMethodType (pcl::SAC_RANSAC);
seg.setMaxIterations (1000);
seg.setDistanceThreshold (0.01);
pcl::ModelCoefficients::Ptr coefficients (new pcl::ModelCoefficients);
pcl::PointIndices::Ptr inliers (new pcl::PointIndices);
seg.setInputCloud (cloud);
seg.segment (*inliers, *coefficients);
if (inliers->indices.size () == 0)
{
PCL_ERROR ("Could not estimate a planar model for the given dataset.");
return (-1);
}
//车头平面模型方程:ax + by + cz + d = 0
float a = coefficients->values[0];
float b = coefficients->values[1];
float c = coefficients->values[2];
float d = coefficients->values[3];
// 分割车头和车厢
float threshold = 0.01;
pcl::ExtractIndices<pcl::PointXYZ> extract;
extract.setInputCloud (cloud);
extract.setIndices (inliers);
pcl::PointCloud<pcl::PointXYZ>::Ptr plane_cloud (new pcl::PointCloud<pcl::PointXYZ>);
extract.filter (*plane_cloud);
pcl::PointCloud<pcl::PointXYZ>::Ptr nonplane_cloud (new pcl::PointCloud<pcl::PointXYZ>);
for (int i = 0; i < cloud->points.size(); i++) {
Eigen::Vector3f point(cloud->points[i].x, cloud->points[i].y, cloud->points[i].z);
float dist = std::abs(point.dot(Eigen::Vector3f(a, b, c)) + d) / std::sqrt(a*a + b*b + c*c);
if (dist > threshold) {
nonplane_cloud->points.push_back(cloud->points[i]);
}
}
// 可视化
pcl::visualization::PCLVisualizer viewer ("Point Cloud Viewer");
viewer.setBackgroundColor (0, 0, 0);
viewer.addPointCloud<pcl::PointXYZ> (plane_cloud, "plane_cloud");
viewer.setPointCloudRenderingProperties (pcl::visualization::PCL_VISUALIZER_COLOR, 1.0, 0.0, 0.0, "plane_cloud");
viewer.addPointCloud<pcl::PointXYZ> (nonplane_cloud, "nonplane_cloud");
viewer.setPointCloudRenderingProperties (pcl::visualization::PCL_VISUALIZER_COLOR, 0.0, 1.0, 0.0, "nonplane_cloud");
viewer.spin ();
return (0);
}
```
阅读全文