基于遗传算法的 BP神经网络回归R语言代码
时间: 2023-09-08 19:09:30 浏览: 111
以下是一个基于遗传算法的BP神经网络回归的R语言代码:
```
library(GA)
library(nnet)
# 生成数据
x <- seq(0, 10, length.out=1000)
y <- sin(x) + rnorm(length(x), sd=0.1)
# 定义BP神经网络
nn <- function(x, y, weights) {
n <- length(weights)
w1 <- matrix(weights[1:(n/2)], ncol=2)
w2 <- weights[(n/2+1):n]
model <- nnet(x, y, size=2, linout=T, trace=FALSE, maxit=1000,
startweights=list(w1=w1, w2=w2))
pred <- predict(model, x)
return(sum((y-pred)^2))
}
# 定义适应度函数
fitness <- function(weights) {
nn(x, y, weights)
}
# 设置GA参数
popSize <- 50
maxGenerations <- 100
elitism <- 1
mutationProb <- 0.01
crossoverProb <- 0.8
chromosomeLength <- 6
# 运行GA
result <- ga(type="real-valued", fitness=fitness,
popSize=popSize, maxiter=maxGenerations,
elitism=elitism, mutationProb=mutationProb,
crossoverProb=crossoverProb,
chromosomeLength=chromosomeLength,
lower=c(-5,-5,-5,-5,-5,-5), upper=c(5,5,5,5,5,5))
# 输出结果
bestWeights <- result@solution
bestModel <- nnet(x, y, size=2, linout=T, trace=FALSE, maxit=1000,
startweights=list(w1=matrix(bestWeights[1:4], ncol=2),
w2=bestWeights[5:6]))
plot(x, y)
lines(x, predict(bestModel, x), col="red")
```
代码中,首先生成了一组随机的数据,然后定义了一个BP神经网络模型和适应度函数。接着设置了GA的参数,包括种群大小、最大迭代次数、精英策略、变异和交叉概率等。最后运行GA,得到最佳权重,并用最佳权重训练出BP神经网络模型,将其与原始数据一起绘制在图中。
阅读全文