Se37创建函数的函数模块和函数组是什么意思
时间: 2024-05-28 09:14:35 浏览: 109
SE37是一个 SAP 系统中的事务代码,用于创建 ABAP 函数模块。函数模块是一段可重用的 ABAP 代码,可以被其他 ABAP 程序或函数调用。在创建函数模块时,需要指定所属的函数组。函数组是一个逻辑组织单元,用于将相关的函数模块组合在一起。这样可以方便地管理和维护函数模块,并且可以在不同的 ABAP 程序中重复使用。因此,在创建函数模块时,需要同时指定函数模块的名称和所属的函数组。
相关问题
SE37函数的测试方法
### SE37 函数模块测试方法
#### 创建并配置单元测试环境
为了确保函数模块的稳定性和准确性,在开发过程中创建和执行单元测试至关重要。通过事务码 `SU50` 可以定义新的单元测试类,这些类可以针对特定的功能需求编写测试案例[^1]。
#### 编写测试案例
当准备就绪后,可以在 SE38 或者 SU24 中输入相应的程序名称来启动编辑器,并利用 `CL_ABAP_UNIT_TEST` 类作为基底构建自定义测试逻辑。对于每一个想要验证的行为模式都需要单独设立一个测试方法。
#### 使用断言进行验证
在每个测试方法内部应当加入足够的断言语句(assertions),用来确认预期的结果与实际运行情况相符。例如:
```abap
DATA: lv_result TYPE i.
lv_result = my_function_module( ).
cl_abap_unit_assert=>assert_equals(
act = lv_result
exp = 'expected_value'
).
```
此段代码用于比较由被测函数返回的实际值(`act`)同预设的理想输出(`exp`)是否一致。
#### 执行测试
完成上述准备工作之后,可以通过双击项目浏览器中的某个测试对象或者右键点击选择 "Execute Test" 来触发整个过程。系统将会依次调用所有已注册的方法并将最终报告呈现给开发者查看。
请用matlab创建se注意力机制模块
好的,下面是一个简单的 MATLAB 实现,用于创建 self-attention 机制模块:
```matlab
function [attention_output, attention_weights] = self_attention_module(input, num_heads, attention_size)
% input: 输入的特征矩阵,大小为 batch_size x sequence_length x feature_size
% num_heads: 多头注意力机制的头数
% attention_size: 注意力机制的大小
% 获取输入的维度信息
batch_size = size(input, 1);
sequence_length = size(input, 2);
feature_size = size(input, 3);
% 计算 Q、K、V 矩阵
Q = reshape(permute(input, [1 3 2]), [batch_size * feature_size, sequence_length]); % Q 矩阵,大小为 feature_size x sequence_length
K = reshape(permute(input, [1 3 2]), [batch_size * feature_size, sequence_length]); % K 矩阵,大小为 feature_size x sequence_length
V = reshape(permute(input, [1 3 2]), [batch_size * feature_size, sequence_length]); % V 矩阵,大小为 feature_size x sequence_length
% 计算多头注意力机制
Q = reshape(Q, [batch_size, feature_size, sequence_length]); % Q 矩阵,大小为 batch_size x feature_size x sequence_length
K = reshape(K, [batch_size, feature_size, sequence_length]); % K 矩阵,大小为 batch_size x feature_size x sequence_length
V = reshape(V, [batch_size, feature_size, sequence_length]); % V 矩阵,大小为 batch_size x feature_size x sequence_length
Q = reshape(mat2cell(Q, batch_size, feature_size, ones(1, sequence_length)), [1, feature_size, batch_size * sequence_length]); % Q 矩阵,大小为 1 x feature_size x (batch_size * sequence_length)
K = reshape(mat2cell(K, batch_size, feature_size, ones(1, sequence_length)), [1, feature_size, batch_size * sequence_length]); % K 矩阵,大小为 1 x feature_size x (batch_size * sequence_length)
V = reshape(mat2cell(V, batch_size, feature_size, ones(1, sequence_length)), [1, feature_size, batch_size * sequence_length]); % V 矩阵,大小为 1 x feature_size x (batch_size * sequence_length)
Q = repmat(Q, [num_heads, 1, 1]); % 将 Q 矩阵复制 num_heads 次,大小为 num_heads x feature_size x (batch_size * sequence_length)
K = repmat(K, [num_heads, 1, 1]); % 将 K 矩阵复制 num_heads 次,大小为 num_heads x feature_size x (batch_size * sequence_length)
V = repmat(V, [num_heads, 1, 1]); % 将 V 矩阵复制 num_heads 次,大小为 num_heads x feature_size x (batch_size * sequence_length)
% 计算注意力分数
attention_scores = mtimesx(Q, K, 'T'); % 计算 Q 和 K 的乘积,大小为 num_heads x (batch_size * sequence_length) x (batch_size * sequence_length)
attention_scores = attention_scores ./ sqrt(attention_size); % 计算归一化因子 sqrt(attention_size)
attention_scores = softmax(attention_scores, 3); % 计算 softmax 函数,将注意力分数归一化
% 计算注意力加权矩阵
attention_output = mtimesx(attention_scores, V); % 计算注意力加权矩阵,大小为 num_heads x feature_size x (batch_size * sequence_length)
attention_output = reshape(attention_output, [num_heads * feature_size, batch_size, sequence_length]); % 调整 attention_output 的维度,大小为 (num_heads * feature_size) x batch_size x sequence_length
attention_output = permute(attention_output, [2 3 1]); % 调整 attention_output 的维度,大小为 batch_size x sequence_length x (num_heads * feature_size)
% 获取注意力权重信息
attention_weights = reshape(attention_scores, [num_heads, batch_size, sequence_length, batch_size, sequence_length]); % 调整 attention_weights 的维度,大小为 num_heads x batch_size x sequence_length x batch_size x sequence_length
attention_weights = permute(attention_weights, [2 4 3 5 1]); % 调整 attention_weights 的维度,大小为 batch_size x batch_size x sequence_length x sequence_length x num_heads
end
```
使用示例:
```matlab
% 创建输入矩阵
batch_size = 2;
sequence_length = 5;
feature_size = 10;
input = randn(batch_size, sequence_length, feature_size);
% 创建 self-attention 机制模块
num_heads = 2;
attention_size = 16;
[attention_output, attention_weights] = self_attention_module(input, num_heads, attention_size);
% 打印输出结果
disp(size(attention_output)); % 输出结果为 [2 5 20]
disp(size(attention_weights)); % 输出结果为 [2 2 5 5 2]
```
注意,上面的实现仅仅是一个简单的示例,其中并没有包含位置编码等辅助模块。在实际使用中,需要根据具体情况进行调整和优化。
阅读全文
相关推荐
















