import os import pickle import numpy as np import pandas as pd import matplotlib.pyplot as plt %matplotlib inline

时间: 2023-10-04 15:11:46 浏览: 103
这是一个 Python 脚本的开头部分,它引入了一些常用的数据科学和可视化库,包括 os、pickle、numpy、pandas 和 matplotlib。其中 %matplotlib inline 表示将绘图直接嵌入到 Jupyter Notebook 或 IPython 中,而不是弹出一个独立的窗口。这个语句通常放在开头,以确保绘图能够正确显示。
相关问题

帮我修改错误import pandas import pandas as pd import np import numpy np_load_old = np.load np.load = lambda *a,**k: np_load_old(*a, allow_pickle=True, **k) import matplotlib.pyplot matplotlib.pyplot.rcParams['font.sans-serif'] = 'SimHei' matplotlib.pyplot.rcParams['axes.unicode_minus'] = False data = numpy.load('D:\\temp\\test\\国民经济核算季度数据.npz') name = data['columns'] values = data['values'] matplotlib.pyplot.figure(figsize = (8,7)) matplotlib.pyplot.scatter(values[:,0],values[:,3], marker = 'o',c = '#0099FF') matplotlib.pyplot.scatter(values[:,0],values[:,4], marker = '*',c = '#00FF00') matplotlib.pyplot.scatter(values[:,0],values[:,5], marker = '+',c = '#FF3300') matplotlib.pyplot.xlabel('年份') matplotlib.pyplot.ylabel('生产总值(亿元)') matplotlib.pyplot.xticks(range(0,70,4),values[range(0,70,4),1],rotation=45) matplotlib.pyplot.title('2000-2017年各产业季度生产总值散点图') matplotlib.pyplot.legend(['第一产业','第二产业','第三产业']) matplotlib.pyplot.savefig('D:\\temp\\test\\2022231168许开国c.png') matplotlib.pyplot.show name1 = pandas.DataFrame(list(data['columns'])) values1 = pandas.DataFrame(list(data['values'])) with pd.ExcelWriter('D:\\temp\\test\\2022231201许开国c.xlsx') as writer: name1.to_excel(writer, sheet_name= 'Sheet1', index=False, header=True) values1.to_excel(writer, sheet_name='Sheet2', index=False, header=True)

以下是修改过的代码,其中主要是将numpy和pandas的导入方式进行了修改,并且在matplotlib.pyplot的导入语句中添加了as关键字,以便在使用时不需要使用完整的模块名: ```python import pandas as pd import numpy as np np_load_old = np.load np.load = lambda *a,**k: np_load_old(*a, allow_pickle=True, **k) import matplotlib.pyplot as plt plt.rcParams['font.sans-serif'] = 'SimHei' plt.rcParams['axes.unicode_minus'] = False data = np.load('D:\\temp\\test\\国民经济核算季度数据.npz') name = data['columns'] values = data['values'] plt.figure(figsize = (8,7)) plt.scatter(values[:,0],values[:,3], marker = 'o',c = '#0099FF') plt.scatter(values[:,0],values[:,4], marker = '*',c = '#00FF00') plt.scatter(values[:,0],values[:,5], marker = '+',c = '#FF3300') plt.xlabel('年份') plt.ylabel('生产总值(亿元)') plt.xticks(range(0,70,4),values[range(0,70,4),1],rotation=45) plt.title('2000-2017年各产业季度生产总值散点图') plt.legend(['第一产业','第二产业','第三产业']) plt.savefig('D:\\temp\\test\\2022231168许开国c.png') plt.show() name1 = pd.DataFrame(list(data['columns'])) values1 = pd.DataFrame(list(data['values'])) with pd.ExcelWriter('D:\\temp\\test\\2022231201许开国c.xlsx') as writer: name1.to_excel(writer, sheet_name= 'Sheet1', index=False, header=True) values1.to_excel(writer, sheet_name='Sheet2', index=False, header=True) ``` 这样的话,你便可以在运行程序时直接使用pd和np作为pandas和numpy的别名,使用plt来代替matplotlib.pyplot。

import os from random import shuffle import pickle import librosa import tensorflow.keras as keras import librosa.display import numpy as np from pandas import Series from matplotlib import pyplot as plt def load_files(audio_dir): files = os.listdir(audio_dir) wav_files = [] for wav in files: if not wav.endswith('.wav'): continue wav_files.append(wav) if not wav_files: print('未找到数据集') shuffle(wav_files) nfiles = len(wav_files) ntrain = int(nfiles * 0.7) return wav_files[: ntrain], wav_files[ntrain:] andio_dir = '../data/recordings/' dataset_pickle = '../tmp/recordings.pk1' train_files, valid_files = load_files(andio_dir) print('训练集样本数为{}\n验证集样本数为{}'.format(len(train_files), len(valid_files))) wave, sr = librosa.load('../data/recordings/0_Agnes_120.wav') plt.rcParams['font.sans-serif'] = ['SimHei'] plt.rcParams['axes.unicode_minus'] = False librosa.display.waveshow(wave, sr=sr) plt.xlabel('时间(s)', fontsize = 13) plt.ylabel('振幅', fontsize = 13) plt.title('原始语音波形图', fontsize = 13) plt.show() mfcc = librosa.feature.mfcc(wave, sr) plt.imshow(np.flipud(mfcc.T), cmap=plt.cm.jet, aspect=0.2, 运行不出来热力图extent=[0, mfcc.shape[0], 0, mfcc.shape[1]]) plt.title('MFCC特征热力图') plt.show()

这段代码有一个拼写错误。在 `load_files` 函数中,您声明了函数参数为 `audio_dir`,但是在调用函数时拼写为 `andio_dir`,应该将其改为 `audio_dir`。 另外,在 `mfcc` 函数中,您没有指定 `n_mfcc` 参数,默认值为 `20`。如果您要使用默认值,可以忽略传递该参数,或者显式地指定为 `n_mfcc=20`。如果您要使用其他值,可以手动传递该参数,例如: ```python mfcc = librosa.feature.mfcc(wave, sr, n_mfcc=40) ``` 最后,在 `plt.imshow` 函数中,您将 `extent` 参数拆分成两行,应该将其合并为一行,即: ```python plt.imshow(np.flipud(mfcc.T), cmap=plt.cm.jet, aspect=0.2, extent=[0, mfcc.shape[0], 0, mfcc.shape[1]]) ```

相关推荐

import streamlit as st import numpy as np import pandas as pd import pickle import matplotlib.pyplot as plt from sklearn import datasets from sklearn.model_selection import train_test_split from sklearn.decomposition import PCA from sklearn.svm import SVC from sklearn.neighbors import KNeighborsClassifier from sklearn.ensemble import RandomForestClassifier import streamlit_echarts as st_echarts from sklearn.metrics import accuracy_score,confusion_matrix,f1_score def pivot_bar(data): option = { "xAxis":{ "type":"category", "data":data.index.tolist() }, "legend":{}, "yAxis":{ "type":"value" }, "series":[ ] }; for i in data.columns: option["series"].append({"data":data[i].tolist(),"name":i,"type":"bar"}) return option st.markdown("mode pracitce") st.sidebar.markdown("mode pracitce") df=pd.read_csv(r"D:\课程数据\old.csv") st.table(df.head()) with st.form("form"): index_val = st.multiselect("choose index",df.columns,["Response"]) agg_fuc = st.selectbox("choose a way",[np.mean,len,np.sum]) submitted1 = st.form_submit_button("Submit") if submitted1: z=df.pivot_table(index=index_val,aggfunc = agg_fuc) st.table(z) st_echarts(pivot_bar(z)) df_copy = df.copy() df_copy.drop(axis=1,columns="Name",inplace=True) df_copy["Response"]=df_copy["Response"].map({"no":0,"yes":1}) df_copy=pd.get_dummies(df_copy,columns=["Gender","Area","Email","Mobile"]) st.table(df_copy.head()) y=df_copy["Response"].values x=df_copy.drop(axis=1,columns="Response").values X_train, X_test, y_train, y_test = train_test_split(x, y, test_size=0.2) with st.form("my_form"): estimators0 = st.slider("estimators",0,100,10) max_depth0 = st.slider("max_depth",1,10,2) submitted = st.form_submit_button("Submit") if "model" not in st.session_state: st.session_state.model = RandomForestClassifier(n_estimators=estimators0,max_depth=max_depth0, random_state=1234) st.session_state.model.fit(X_train, y_train) y_pred = st.session_state.model.predict(X_test) st.table(confusion_matrix(y_test, y_pred)) st.write(f1_score(y_test, y_pred)) if st.button("save model"): pkl_filename = "D:\\pickle_model.pkl" with open(pkl_filename, 'wb') as file: pickle.dump(st.session_state.model, file) 会出什么错误

import numpy as np import matplotlib.pyplot as plt import pickle as pkl import pandas as pd import tensorflow.keras from tensorflow.keras.models import Sequential, Model, load_model from tensorflow.keras.layers import LSTM, GRU, Dense, RepeatVector, TimeDistributed, Input, BatchNormalization, \ multiply, concatenate, Flatten, Activation, dot from sklearn.metrics import mean_squared_error,mean_absolute_error from tensorflow.keras.optimizers import Adam from tensorflow.python.keras.utils.vis_utils import plot_model from tensorflow.keras.callbacks import EarlyStopping from keras.callbacks import ReduceLROnPlateau df = pd.read_csv('lorenz.csv') signal = df['signal'].values.reshape(-1, 1) x_train_max = 128 signal_normalize = np.divide(signal, x_train_max) def truncate(x, train_len=100): in_, out_, lbl = [], [], [] for i in range(len(x) - train_len): in_.append(x[i:(i + train_len)].tolist()) out_.append(x[i + train_len]) lbl.append(i) return np.array(in_), np.array(out_), np.array(lbl) X_in, X_out, lbl = truncate(signal_normalize, train_len=50) X_input_train = X_in[np.where(lbl <= 9500)] X_output_train = X_out[np.where(lbl <= 9500)] X_input_test = X_in[np.where(lbl > 9500)] X_output_test = X_out[np.where(lbl > 9500)] # Load model model = load_model("model_forecasting_seq2seq_lstm_lorenz.h5") opt = Adam(lr=1e-5, clipnorm=1) model.compile(loss='mean_squared_error', optimizer=opt, metrics=['mae']) #plot_model(model, to_file='model_plot.png', show_shapes=True, show_layer_names=True) # Train model early_stop = EarlyStopping(monitor='val_loss', patience=20, verbose=1, mode='min', restore_best_weights=True) #reduce_lr = ReduceLROnPlateau(monitor='val_loss', factor=0.2, patience=9, verbose=1, mode='min', min_lr=1e-5) #history = model.fit(X_train, y_train, epochs=500, batch_size=128, validation_data=(X_test, y_test),callbacks=[early_stop]) #model.save("lstm_model_lorenz.h5") # 对测试集进行预测 train_pred = model.predict(X_input_train[:, :, :]) * x_train_max test_pred = model.predict(X_input_test[:, :, :]) * x_train_max train_true = X_output_train[:, :] * x_train_max test_true = X_output_test[:, :] * x_train_max # 计算预测指标 ith_timestep = 10 # Specify the number of recursive prediction steps # List to store the predicted steps pred_len =2 predicted_steps = [] for i in range(X_output_test.shape[0]-pred_len+1): YPred =[],temdata = X_input_test[i,:] for j in range(pred_len): Ypred.append (model.predict(temdata)) temdata = [X_input_test[i,j+1:-1],YPred] # Convert the predicted steps into numpy array predicted_steps = np.array(predicted_steps) # Plot the predicted steps #plt.plot(X_output_test[0:ith_timestep], label='True') plt.plot(predicted_steps, label='Predicted') plt.legend() plt.show()

最新推荐

recommend-type

ASP外观专利图像检索平台(源代码+论文).rar

ASP外观专利图像检索平台(源代码+论文)
recommend-type

C++课程设计:电煤气管理系统【源码+文档】

C++课程设计:电煤气管理系统【源码+文档】 本程序是一个水电气管理信息系统,能够对高校的水电气费用进行管理, 包括了成员的基本信息,如学号、编号、姓名、成员水电气的用量等。程序的用途包括缴纳水电气费、查询一个同学水电气费用量、查看所有同学的缴费情况、增加学生信息、删除学生信息、退出系统等。在设计时也考虑到学生和教师在用水电气时的不同,学生可以免费使用一定额度的水电气,超过这个额度的以后必须付费,且付费部分水电气费的价格要高于教工的收费标准,该措施的实行是为了鼓励同学们节约资源,以免造成不必要的资源浪费。该软件主要是为了学校的管理人员提供便捷,以更快的完成水电气费用的收缴。该软件本着简洁明了,实用稳定为一体进行设计。 系统将实现以下功能: (1)实现对用户信息的录入; (2)实现水电煤气数据的录入; (3)实现计算并查询用户应缴费用,查询未缴纳费用的名单; (4)实现对人员的删除和添加;
recommend-type

SDN权威指南:深入解析软件定义网络与OpenFlow

"SDN: Software Defined Networks 由 Thomas D. Nadeau 和 Ken Gray 编著,这是一本深入剖析SDN技术的权威指南。本书详细介绍了软件定义网络(SDN)的概念、原理以及OpenFlow等相关技术,是计算机教材和IT专业人员的重要参考资料。" 在SDN(Software Defined Networking)这一领域,它代表了网络架构的一次重大革新,将控制平面与数据平面分离,从而实现了网络的灵活配置和集中管理。这本书由Thomas D. Nadeau和Ken Gray共同撰写,他们都是SDN领域的专家,提供了对SDN的深度解析。 书中主要知识点包括: 1. **SDN的基本概念**:解释了SDN的核心理念,即通过将网络控制逻辑从底层硬件中抽象出来,集中到一个独立的控制器,使得网络可以像软件一样被编程和管理。 2. **OpenFlow协议**:OpenFlow是SDN中最著名的数据平面接口,它允许控制器直接与交换机通信,定义数据包的转发路径。书中详细阐述了OpenFlow的工作机制、协议报文结构和如何实现流表的建立与更新。 3. **SDN架构**:描述了典型的SDN架构,包括网络设备(如交换机、路由器)、控制器以及应用层的构成,分析了各部分的角色和交互方式。 4. **SDN的优势**:讨论了SDN带来的好处,如提高网络的灵活性、可扩展性,简化网络管理,以及支持创新的网络服务和策略。 5. **安全性与挑战**:探讨了SDN在安全方面可能面临的问题,如集中式控制器的安全隐患、数据平面的攻击面扩大等,并提出了相应的解决方案。 6. **SDN的应用场景**:列举了SDN在数据中心网络、云计算、虚拟化环境、广域网优化、网络安全等领域中的实际应用案例,展示了SDN技术的广泛影响力。 7. **控制器平台与框架**:介绍了一些主流的SDN控制器,如OpenDaylight、ONOS等,以及相关的开发框架和工具,帮助读者理解如何构建和部署SDN解决方案。 8. **未来发展趋势**:分析了SDN技术的未来发展方向,包括NFV(网络功能虚拟化)、边缘计算、5G网络等,预示了SDN在下一代网络中的关键作用。 本书不仅适合网络工程师、研究人员和学者深入学习SDN,也适合作为高校相关专业的教材,通过理论与实践相结合的方式,帮助读者掌握SDN技术并应用于实际网络环境中。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

PHP图片上传扩展应用:实现图片裁剪、水印和压缩功能

![PHP图片上传扩展应用:实现图片裁剪、水印和压缩功能](https://st0.dancf.com/market-operations/market/side/1701682825707.jpg) # 1. PHP图片上传扩展介绍 PHP提供了多种图片上传扩展,允许开发者轻松地将图片上传到服务器。这些扩展包括: - **GD库:**一个用于处理图像的标准PHP扩展,提供基本的图片操作功能,如裁剪、缩放和添加水印。 - **ImageMagick:**一个功能强大的命令行工具,可用于执行更高级的图像处理任务,如复杂的裁剪、颜色校正和格式转换。 # 2. PHP图片裁剪技术 ### 2
recommend-type

sentinel 热点限流nacos配置

Sentinel 是阿里巴巴开源的一个流量控制框架,它支持热点限流功能。要通过 Nacos 配置 Sentinel 的热点限流,首先需要在 Nacos 中管理 Sentinel 相关的服务发现配置。 1. **创建Nacos配置**: - 登录到 Nacos 控制台,进入 `配置` 或者 `Config Center` 页面。 - 创建一个新的数据源,用于存放 Sentinel 的配置文件,比如命名空间为 `sentinel-config`。 2. **配置热点规则**: - 编辑一个名为 `hot_rule.yaml` 或类似名称的配置文件,添加如下内容: `
recommend-type

HP9000服务器宝典:从入门到进阶

"HP9000非常宝典.pdf" 这篇文档是关于HP9000服务器的详尽指南,涵盖了从基础概念到高级操作的多个方面。以下是文档中提到的一些关键知识点: 1. HP9000服务器:这是惠普公司生产的一系列高性能、可靠性高的企业级服务器,主要面向大型企业和组织。 2. 服务器产品分类:服务器通常按照功能、性能和规模进行分类,如入门级、部门级、企业级等,HP9000可能包括其中的不同型号。 3. CPU:服务器的核心组件,文档中可能介绍了HP9000所使用的处理器类型及其特性。 4. 配置相关信息:这部分内容涉及如何配置服务器硬件,如内存、硬盘、网络接口等,以及如何检查系统配置信息。 5. 维护相关信息:包括如何进行日常维护,如监控系统状态、错误日志分析、硬件更换等。 6. ModelString、SWID和ssconfig:这些是HP服务器特有的标识符和工具,用于识别和管理硬件及软件。 7. 操作系统:文档可能详细介绍了支持HP9000的多种操作系统,如HP-UX、Linux等,并可能涉及启动流程。 8. 启动过程:从开机到操作系统加载的整个流程,包括PDC(Processor Dependent Code)、ISL、LoadKernel、Startsubsystem、初始化脚本如/etc/init、/sbin/bcheckrc、/etc/rc.config、/sbin/rc等。 9. Init进程问题:讨论了当命令反复启动过快时,系统如何处理,如"Init: Command is Respawning Too Rapidly"。 10. 登录与权限:描述了用户登录系统的过程,以及权限管理和认证。 11. Patches和应用软件安装:讲述了如何列出、安装和验证补丁,以及补丁评级和打包安装方法。还提到了补丁光盘和标准补丁包-SupportPlus。 12. 系统核心(Kernel):核心是操作系统的核心部分,文档可能讲解了其作用、如何手工编译生成新的核心。 13. LVM (Logical Volume Manager):一种磁盘管理技术,允许动态扩展和管理磁盘空间。文档给出了创建镜像、LVM磁盘结构、pvcreate、mkboot、vgcfgbackup/vgcfgrestore、vgchange等操作的实例。 14. 集群和高可用性:如MC/ServiceGuard,介绍了节点(node)、共享存储、心跳线、备份网卡和锁盘的概念,以及如何实现高可用性。 15. CrashDump与HPMC:CrashDump是系统崩溃时保存的内存转储,用于故障分析。HPMC(Machine Console)提供了远程监控和管理服务器的功能。文档介绍了如何配置DumpDevice、保存和分析CrashDump,以及收集和分析HPMC数据。 此文档对于理解和管理HP9000服务器系统具有极高的参考价值,无论是对于初学者还是经验丰富的管理员,都能从中获得宝贵的信息。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

PHP图片上传性能监控与分析:识别性能瓶颈并优化上传流程

![PHP图片上传性能监控与分析:识别性能瓶颈并优化上传流程](https://embed-ssl.wistia.com/deliveries/41ccfbce47f61e2883c01ed91797198b.webp?image_crop_resized=960x540) # 1. PHP图片上传概述** PHP图片上传是一种将图片文件从客户端传输到服务器的过程。它涉及多个步骤,包括: - **客户端准备:**用户选择要上传的图片文件。 - **网络传输:**图片文件通过HTTP请求发送到服务器。 - **服务器处理:**服务器接收文件,将其保存到指定位置并执行任何必要的处理(例如,验证
recommend-type

在labelimg里删改了标签后,labelimg闪退怎么解决

LabelImg是一款用于图像标注的工具,如果在修改标签后遇到闪退的问题,可以尝试以下几个步骤来解决问题: 1. **更新到最新版本**:检查LabelImg是否有新版本发布,有时软件的bug可能已经在后续更新中修复。 2. **清除缓存和数据**:关闭LabelImg后,删除其安装目录下的.cache文件夹,这通常位于应用程序数据路径下,清理这部分可能导致的配置冲突。 3. **检查文件损坏**:确保你正在处理的图像文件没有损坏,有时候错误的文件可能会导致程序崩溃。 4. **错误日志排查**:查找LabelImg安装目录下的logs文件夹,查看是否存在异常的日志信息,可以帮助定位问