将https://github.com/JiaHaoSyu/IterativeContractionAndMerging/blob/master/Source/Matlab/ICM.m的代码转化为Python代码
时间: 2023-10-05 14:09:45 浏览: 93
以下是将Matlab代码转换为Python的代码:
```python
import numpy as np
def ICM(image, beta, max_iter):
# 将图像转成灰度图
if image.ndim == 3:
image = np.mean(image, axis=2)
# 初始化标签矩阵
labels = np.zeros_like(image)
labels[:, 1:] = np.cumsum(image[:, :-1] != image[:, 1:], axis=1)
labels[1:, :] += np.cumsum(image[:-1, :] != image[1:, :], axis=0)
# 开始迭代
for i in range(max_iter):
# 随机遍历像素
for y in np.random.permutation(labels.shape[0]):
for x in np.random.permutation(labels.shape[1]):
# 获取当前像素的标签和邻居标签
label = labels[y, x]
neighbors = []
if y > 0:
neighbors.append(labels[y-1, x])
if y < labels.shape[0]-1:
neighbors.append(labels[y+1, x])
if x > 0:
neighbors.append(labels[y, x-1])
if x < labels.shape[1]-1:
neighbors.append(labels[y, x+1])
# 计算当前像素与邻居像素的能量
energy = []
for neighbor in neighbors:
energy.append(beta * (label != neighbor))
# 找到能量最小的标签
min_energy = np.inf
min_label = label
for new_label in np.unique(neighbors):
if new_label == label:
continue
e = np.sum(np.array(energy)[np.array(neighbors) == new_label])
if e < min_energy:
min_energy = e
min_label = new_label
# 更新像素标签
labels[y, x] = min_label
# 返回分割结果
return labels
```
需要注意的是,Matlab和Python的数组索引方式不同,因此在代码实现时需要进行相应的调整。
阅读全文