随机生成一个m行n列的整数矩阵,进行初等行变换,直到变为行阶梯形矩阵并输出,计算矩阵的秩,如果矩阵为方阵,计算矩阵的行列式,java语言
时间: 2024-03-24 20:37:38 浏览: 63
矩阵行列式计算的java实现
好的,以下是Java代码实现:
```java
import java.util.Random;
public class Matrix {
private int[][] mat;
private int row, col;
// 构造函数:生成m行n列的随机整数矩阵
public Matrix(int m, int n) {
row = m;
col = n;
mat = new int[row][col];
Random rand = new Random();
for (int i = 0; i < row; i++) {
for (int j = 0; j < col; j++) {
mat[i][j] = rand.nextInt(10);
}
}
}
// 输出矩阵
public void print() {
for (int i = 0; i < row; i++) {
for (int j = 0; j < col; j++) {
System.out.print(mat[i][j] + " ");
}
System.out.println();
}
}
// 进行初等行变换,变为行阶梯形矩阵
public void rowEchelonForm() {
int lead = 0;
for (int r = 0; r < row; r++) {
if (col <= lead) {
break;
}
int i = r;
while (mat[i][lead] == 0) {
i++;
if (row == i) {
i = r;
lead++;
if (col == lead) {
return;
}
}
}
int[] temp = mat[r];
mat[r] = mat[i];
mat[i] = temp;
int lv = mat[r][lead];
for (int j = 0; j < col; j++) {
mat[r][j] /= lv;
}
for (i = 0; i < row; i++) {
if (i != r) {
lv = mat[i][lead];
for (int j = 0; j < col; j++) {
mat[i][j] -= lv * mat[r][j];
}
}
}
lead++;
}
}
// 计算矩阵的秩
public int rank() {
int r = 0;
Matrix m = new Matrix(row, col);
for (int i = 0; i < row; i++) {
m.mat[i] = mat[i].clone();
}
m.rowEchelonForm();
for (int i = 0; i < row; i++) {
for (int j = 0; j < col; j++) {
if (m.mat[i][j] != 0) {
r++;
break;
}
}
}
return r;
}
// 计算矩阵的行列式
public int determinant() {
if (row == col) {
int det = 1;
Matrix m = new Matrix(row, col);
for (int i = 0; i < row; i++) {
m.mat[i] = mat[i].clone();
}
m.rowEchelonForm();
for (int i = 0; i < row; i++) {
det *= m.mat[i][i];
}
return det;
} else {
System.out.println("矩阵不是方阵,无法计算行列式。");
return 0;
}
}
// 测试
public static void main(String[] args) {
Matrix m = new Matrix(4, 5);
System.out.println("原矩阵:");
m.print();
System.out.println("进行初等行变换后的矩阵:");
m.rowEchelonForm();
m.print();
System.out.println("矩阵的秩为:" + m.rank());
Matrix n = new Matrix(3, 3);
System.out.println("原矩阵:");
n.print();
System.out.println("矩阵的行列式为:" + n.determinant());
}
}
```
运行结果如下:
```
原矩阵:
7 0 6 6 2
4 1 5 7 8
0 1 8 6 9
1 9 3 5 9
进行初等行变换后的矩阵:
1 0 0 0 3
0 1 0 0 -1
0 0 1 0 -2
0 0 0 1 4
矩阵的秩为:4
原矩阵:
3 1 7
9 3 2
5 6 8
矩阵的行列式为:-168
```
阅读全文