基于resnet50的图像能见度检测代码
时间: 2023-06-13 12:04:30 浏览: 228
以下是基于ResNet50的图像能见度检测代码,使用Python和Keras框架:
```python
import numpy as np
import cv2
from keras.models import load_model
# 加载ResNet50模型
model = load_model('resnet50_model.h5')
# 定义图像尺寸
rows, cols = 224, 224
# 加载测试图像
img = cv2.imread('test_image.jpg')
# 调整图像尺寸
img = cv2.resize(img, (rows, cols))
# 将图像转换为数组
img = np.array(img, dtype=np.float32)
# 将图像数据标准化
img = img / 255.0
# 将图像数组转换为4D张量
img = np.expand_dims(img, axis=0)
# 使用ResNet50模型进行预测
result = model.predict(img)
# 输出结果
print("能见度指数为:", result[0][0])
```
此代码需要使用已经训练好的ResNet50模型文件,可以通过Keras框架进行训练。需要注意的是,测试图像需要与训练时的图像具有相同的尺寸和颜色通道。
相关问题
基于resnet50对图像能见度检测的代码
以下是基于ResNet50的图像能见度检测代码,使用Keras框架实现:
```python
import cv2
import numpy as np
from keras.models import Model
from keras.layers import Dense, GlobalAveragePooling2D
from keras.applications.resnet50 import ResNet50
from keras.preprocessing.image import ImageDataGenerator
# 加载ResNet50模型,去掉顶层
base_model = ResNet50(weights="imagenet", include_top=False, input_shape=(224, 224, 3))
# 添加全局平均池化层
x = base_model.output
x = GlobalAveragePooling2D()(x)
# 添加全连接层,输出为1个值
predictions = Dense(1, activation="sigmoid")(x)
# 构建模型
model = Model(inputs=base_model.input, outputs=predictions)
# 冻结ResNet50的前100层
for layer in model.layers[:100]:
layer.trainable = False
# 编译模型
model.compile(optimizer="adam", loss="binary_crossentropy", metrics=["accuracy"])
# 创建ImageDataGenerator实例,用于数据增强和图像预处理
datagen = ImageDataGenerator(rescale=1./255, shear_range=0.2, zoom_range=0.2, horizontal_flip=True)
# 加载训练集和验证集
train_set = datagen.flow_from_directory("train/", target_size=(224, 224), batch_size=32, class_mode="binary")
val_set = datagen.flow_from_directory("val/", target_size=(224, 224), batch_size=32, class_mode="binary")
# 训练模型
model.fit_generator(train_set, steps_per_epoch=len(train_set), epochs=10, validation_data=val_set, validation_steps=len(val_set))
# 加载测试集
test_set = datagen.flow_from_directory("test/", target_size=(224, 224), batch_size=32, class_mode="binary")
# 评估模型性能
scores = model.evaluate_generator(test_set, steps=len(test_set))
print("Accuracy: %.2f%%" % (scores[1]*100))
# 对单张图像进行预测
img = cv2.imread("test/image1.jpg")
img = cv2.resize(img, (224, 224))
img = np.expand_dims(img, axis=0)
img = img/255.0
pred = model.predict(img)
if pred > 0.5:
print("图像能见度不好")
else:
print("图像能见度良好")
```
需要注意的是,这里的训练集、验证集和测试集需要按照Keras的ImageDataGenerator要求的格式组织,具体可以参考Keras文档。同时,也可以根据实际情况对数据增强参数进行调整。
在pytorch基于resnet50的图像能见度检测的代码
以下是基于PyTorch实现的图像能见度检测代码,使用的是ResNet50模型:
```
import torch
import torch.nn as nn
import torchvision.models as models
class VisibilityNet(nn.Module):
def __init__(self):
super(VisibilityNet, self).__init__()
self.resnet = models.resnet50(pretrained=True)
self.fc1 = nn.Linear(1000, 256)
self.relu = nn.ReLU()
self.fc2 = nn.Linear(256, 1)
self.sigmoid = nn.Sigmoid()
def forward(self, x):
x = self.resnet(x)
x = self.fc1(x)
x = self.relu(x)
x = self.fc2(x)
x = self.sigmoid(x)
return x
```
在训练数据集上训练模型时,可以使用以下代码:
```
import torch.optim as optim
import torch.utils.data as data
from torchvision import transforms
# Define transforms for data augmentation
transform = transforms.Compose([
transforms.Resize((224, 224)),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225))
])
# Load the dataset using DataLoader
train_set = data.Dataset(train_data_path, transform=transform)
train_loader = data.DataLoader(train_set, batch_size=batch_size, shuffle=True)
# Initialize the model and optimizer
model = VisibilityNet()
optimizer = optim.Adam(model.parameters(), lr=learning_rate)
# Train the model on the training set
for epoch in range(num_epochs):
for i, (images, labels) in enumerate(train_loader):
images = images.to(device)
labels = labels.to(device)
optimizer.zero_grad()
outputs = model(images)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
```
其中,train_data_path是训练数据集的路径,batch_size是每个batch的大小,learning_rate是学习率,num_epochs是训练的轮数。在每个batch训练完后,通过计算损失和反向传播优化模型参数。
阅读全文