import community G = nx.karate_club_graph() partition = community.best_partition(G) pos = nx.spring_layout(G) plt.figure(figsize=(12,12)) plt.axis('off') nx.draw_networkx_nodes(G, pos, node_size=200, cmap=plt.cm.RdYlBu, node_color=list(partition.values())) nx.draw_networkx_edges(G,pos, alpha=0.5)
时间: 2024-03-01 18:53:15 浏览: 101
这段代码使用了`python-louvain`库中的`community.best_partition`函数来对Karate Club图进行社区检测,并使用`NetworkX`库和`Matplotlib`库来可视化结果。
具体步骤如下:
1. 导入所需的模块。
```
import networkx as nx
import community
import matplotlib.pyplot as plt
```
2. 创建Karate Club图。
```
G = nx.karate_club_graph()
```
3. 使用`community.best_partition`函数检测图中的社区,并将结果存储在字典`partition`中。
```
partition = community.best_partition(G)
```
4. 使用`nx.spring_layout`函数来计算节点的位置,并将结果存储在`pos`中。
```
pos = nx.spring_layout(G)
```
5. 使用`plt.figure`函数创建一个图形对象,设置图形大小并关闭坐标轴。
```
plt.figure(figsize=(12,12))
plt.axis('off')
```
6. 使用`nx.draw_networkx_nodes`函数绘制节点,并使用`partition`字典中存储的社区信息来设置节点颜色。
```
nx.draw_networkx_nodes(G, pos, node_size=200, cmap=plt.cm.RdYlBu, node_color=list(partition.values()))
```
7. 使用`nx.draw_networkx_edges`函数绘制边缘。
```
nx.draw_networkx_edges(G,pos, alpha=0.5)
```
8. 使用`plt.show`函数显示图形。
```
plt.show()
```
这样就可以得到一个带有社区颜色的Karate Club图,其中每个颜色代表一个社区。
阅读全文