np.random.seed()与random.seed()一样吗
时间: 2023-03-31 09:04:33 浏览: 135
np.random.seed()和random.seed()的作用是一样的,都是用来设置随机数生成器的种子,以便于生成可重复的随机数序列。但是,np.random.seed()是用于NumPy库中的随机数生成器,而random.seed()是用于Python标准库中的随机数生成器。因此,它们的用法和参数可能略有不同。
相关问题
seed=3 np.random.seed(seed) np.random.shuffle(x_train) np.random.seed(seed) np.random.shuffle(y_train) tf.random.set_seed(seed)是什么意思
这段代码的作用是设置随机数种子,以确保在随机操作中得到可重复的结果。具体来说,这段代码:
1. 设置随机数种子为3,即后续的随机操作都将基于这个种子进行。
2. 使用该种子对训练数据集x_train和标签y_train进行随机打乱操作,以充分利用数据集来训练模型。
3. 设置TensorFlow的随机种子为3,以确保后续的随机操作也将基于该种子进行。
这样做的好处是,每次运行代码时得到的随机结果都是相同的,从而可以确保模型的可重复性,同时也可以方便进行调试和比较不同模型的结果。
o3d.utility.random.seed(1000 np.random.seed(1000) sklearn.random.seed(1000) scipy.random.seed(1000)
这是一组函数调用,用于设置不同库中的随机数生成器的种子。具体来说,o3d.utility.random.seed(1000)设置了Open3D库中的随机数生成器种子,np.random.seed(1000)设置了NumPy库中的随机数生成器种子,sklearn.random.seed(1000)设置了Scikit-learn库中的随机数生成器种子,scipy.random.seed(1000)设置了SciPy库中的随机数生成器种子。这些函数调用的目的是确保每次运行程序时生成的随机数序列是相同的,从而使结果可重复。需要注意的是,这些函数只会影响各自库内部的随机数生成,而不会影响其他库或Python的random模块的随机数生成。
阅读全文