parser.add_argument('--clip', type=float, default=-1, help='gradient clip, -1 means no clip (default: -1)')
时间: 2024-06-07 10:07:24 浏览: 95
这段代码是用来设置梯度裁剪的参数。梯度裁剪是一种优化神经网络训练的技术,它的目的是限制梯度的范数,防止梯度爆炸(gradient explosion)或梯度消失(gradient vanishing)的问题。梯度爆炸指的是梯度的值过大,导致网络参数的变化过快,训练不稳定;梯度消失指的是梯度的值过小,导致网络参数的变化过慢,训练效果差。
在这段代码中,`--clip` 参数用来设置梯度裁剪的阈值,即限制梯度的范数不超过该值。如果 `--clip` 参数的值为负数(默认值为-1),则表示不进行梯度裁剪。如果 `--clip` 参数的值为正数,则表示设置梯度裁剪的阈值为该正数。
相关问题
### ------- training settings -------------- parser.add_argument('--cols', type=str, nargs='+', help='file list') parser.add_argument('--num_workers', type=int, default=0, help='data loader num workers') parser.add_argument('--itr', type=bool, default=False, help='multiple seeds or not') parser.add_argument('--train_epochs', type=int, default=100, help='train epochs') parser.add_argument('--batch_size', type=int, default=32, help='batch size of train input data') parser.add_argument('--patience', type=int, default=10, help='early stopping patience') parser.add_argument('--lr', type=float, default=0.0001, help='optimizer learning rate') parser.add_argument('--loss', type=str, default='mae',help='loss function') parser.add_argument('--lradj', type=int, default=1,help='adjust learning rate') parser.add_argument('--save', type=bool, default=True, help='save the output results') parser.add_argument('--model_name', type=str, default='LightTS') parser.add_argument('--resume', type=bool, default=False) parser.add_argument('--evaluate', type=bool, default=False)
这是一段训练设置的代码,可以用于训练一个名为LightTS的模型。它包括了许多参数设置,例如训练时的epoch数、batch size、学习率、损失函数、early stopping的patience、是否保存输出结果等等。另外,还有一些参数用于控制训练的细节,例如是否使用多个种子来训练(itr参数)、是否调整学习率(lradj参数)等等。最后,还有一些参数可以控制模型的加载、继续训练、评估等等。
if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--epochs", type=int, default=100, help="number of epochs") parser.add_argument("--batch_size", type=int, default=4, help="size of each image batch") parser.add_argument("--gradient_accumulations", type=int, default=2, help="number of gradient accums before step") parser.add_argument("--model_def", type=str, default="config/yolov3.cfg", help="path to model definition file") parser.add_argument("--data_config", type=str, default="config/coco.data", help="path to data config file") parser.add_argument("--pretrained_weights", type=str, help="if specified starts from checkpoint model") parser.add_argument("--n_cpu", type=int, default=0, help="number of cpu threads to use during batch generation") parser.add_argument("--img_size", type=int, default=416, help="size of each image dimension") parser.add_argument("--checkpoint_interval", type=int, default=1, help="interval between saving model weights") parser.add_argument("--evaluation_interval", type=int, default=1, help="interval evaluations on validation set") parser.add_argument("--compute_map", default=False, help="if True computes mAP every tenth batch") parser.add_argument("--multiscale_training", default=True, help="allow for multi-scale training") opt = parser.parse_args() print(opt)
这段代码是一个 Python 脚本,用于训练 YOLOv3 目标检测模型。它使用 argparse 模块来解析命令行参数,并将这些参数存储在 opt 对象中。这些参数包括训练轮数、批量大小、梯度积累次数、模型定义文件路径、数据配置文件路径、预训练权重文件路径、CPU 线程数、图像大小、保存模型权重的间隔、在验证集上评估的间隔、是否计算 mAP、是否允许多尺度训练等。最后,它打印出 opt 对象的值。
阅读全文