请基于pytorch,分模块编写一个应用于一维时间序列噪声去除的TCN网络代码
时间: 2023-06-11 18:05:31 浏览: 153
好的,以下是基于PyTorch的TCN网络代码,用于一维时间序列噪声去除:
```python
import torch
import torch.nn as nn
from torch.nn.utils import weight_norm
class TemporalConvNet(nn.Module):
def __init__(self, input_size, output_size, num_channels, kernel_size=2, dropout=0.2):
super(TemporalConvNet, self).__init__()
layers = []
num_levels = len(num_channels)
for i in range(num_levels):
dilation_size = 2 ** i
in_channels = input_size if i == 0 else num_channels[i-1]
out_channels = num_channels[i]
layers += [TemporalBlock(in_channels, out_channels, kernel_size, dilation=dilation_size,
padding=(kernel_size-1)*dilation_size, dropout=dropout)]
self.tcn = nn.Sequential(*layers)
self.linear = nn.Linear(num_channels[-1], output_size)
def forward(self, x):
y = self.tcn(x)
o = self.linear(y[:, :, -1])
return o
class TemporalBlock(nn.Module):
def __init__(self, n_inputs, n_outputs, kernel_size, dilation, padding, dropout):
super(TemporalBlock, self).__init__()
self.conv1 = weight_norm(nn.Conv1d(n_inputs, n_outputs, kernel_size, dilation=dilation, padding=padding))
self.chomp1 = nn.ConstantPad1d((0, 1), 0)
self.relu1 = nn.ReLU()
self.dropout1 = nn.Dropout(dropout)
self.conv2 = weight_norm(nn.Conv1d(n_outputs, n_outputs, kernel_size, dilation=dilation, padding=padding))
self.chomp2 = nn.ConstantPad1d((0, 1), 0)
self.relu2 = nn.ReLU()
self.dropout2 = nn.Dropout(dropout)
self.net = nn.Sequential(self.conv1, self.chomp1, self.relu1, self.dropout1,
self.conv2, self.chomp2, self.relu2, self.dropout2)
self.downsample = nn.Conv1d(n_inputs, n_outputs, 1) if n_inputs != n_outputs else None
self.relu = nn.ReLU()
def forward(self, x):
y = self.net(x)
res = x if self.downsample is None else self.downsample(x)
y += res
return self.relu(y)
```
这个代码实现了一个时序卷积网络(Temporal Convolutional Network,TCN),用于一维时间序列噪声去除。这个TCN网络由多个TemporalBlock组成,每个TemporalBlock内含两个卷积层和一些其他层,用空洞卷积(dilated convolution)实现局部连接并且不增加数据量。最后,给一个线性层,输出我们想要的时序去噪信号。这个代码可以通过传递输入数据x作为网络的输入,获取输出o作为去噪后的信号。
请注意,这里的代码块可能不是完整的能够成功运行的程序,使用代码前应该根据自己的需求对代码进行修改和调整。
阅读全文