多智能体编队actor-critic pytorch代码
时间: 2024-01-11 19:02:32 浏览: 70
对于一个多智能体编队问题,可以采用actor-critic算法来解决。以下是使用PyTorch实现的代码示例:
```
import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
import random
class Actor(nn.Module):
def __init__(self, state_dim, action_dim, hidden_dim):
super(Actor, self).__init__()
self.fc1 = nn.Linear(state_dim, hidden_dim)
self.fc2 = nn.Linear(hidden_dim, hidden_dim)
self.fc3 = nn.Linear(hidden_dim, action_dim)
self.relu = nn.ReLU()
self.softmax = nn.Softmax(dim=1)
def forward(self, state):
x = self.relu(self.fc1(state))
x = self.relu(self.fc2(x))
x = self.softmax(self.fc3(x))
return x
class Critic(nn.Module):
def __init__(self, state_dim, hidden_dim):
super(Critic, self).__init__()
self.fc1 = nn.Linear(state_dim, hidden_dim)
self.fc2 = nn.Linear(hidden_dim, hidden_dim)
self.fc3 = nn.Linear(hidden_dim, 1)
self.relu = nn.ReLU()
def forward(self, state):
x = self.relu(self.fc1(state))
x = self.relu(self.fc2(x))
x = self.fc3(x)
return x
class Agent():
def __init__(self, state_dim, action_dim, hidden_dim, lr, gamma):
self.actor = Actor(state_dim, action_dim, hidden_dim)
self.actor_optimizer = optim.Adam(self.actor.parameters(), lr=lr)
self.critic = Critic(state_dim, hidden_dim)
self.critic_optimizer = optim.Adam(self.critic.parameters(), lr=lr)
self.gamma = gamma
def act(self, state):
state = torch.FloatTensor(state)
action_probs = self.actor(state)
action_probs = action_probs.detach().numpy()
action = np.random.choice(len(action_probs[0]), p=action_probs[0])
return action
def learn(self, states, actions, rewards, next_states, dones):
states = torch.FloatTensor(states)
actions = torch.LongTensor(actions)
rewards = torch.FloatTensor(rewards)
next_states = torch.FloatTensor(next_states)
dones = torch.FloatTensor(dones)
values = self.critic(states).squeeze()
next_values = self.critic(next_states).squeeze()
target_values = rewards + self.gamma * next_values * (1 - dones)
advantages = target_values - values
actor_loss = -torch.log(self.actor(states)[range(len(actions)), actions]) * advantages.detach()
critic_loss = nn.MSELoss()(values, target_values.detach())
self.actor_optimizer.zero_grad()
actor_loss.mean().backward()
self.actor_optimizer.step()
self.critic_optimizer.zero_grad()
critic_loss.backward()
self.critic_optimizer.step()
if __name__ == '__main__':
env = gym.make('CartPole-v0')
state_dim = env.observation_space.shape[0]
action_dim = env.action_space.n
hidden_dim = 128
lr = 0.001
gamma = 0.99
agent = Agent(state_dim, action_dim, hidden_dim, lr, gamma)
episodes = 1000
scores = []
for episode in range(episodes):
state = env.reset()
done = False
score = 0
while not done:
action = agent.act(state)
next_state, reward, done, info = env.step(action)
agent.learn(state, action, reward, next_state, done)
state = next_state
score += reward
scores.append(score)
print('Episode: {}, Score: {}'.format(episode, score))
```
阅读全文