用matlab写一个HR神经元模型的程序
时间: 2023-03-26 17:00:43 浏览: 143
Hindmarsh-Rose神经元模型matlab仿真程序.txt
可以回答这个问题。以下是一个简单的 HR 神经元模型的 MATLAB 程序:
function [V, m, h, n] = HR_neuron(I, V, m, h, n, tspan)
% HR_neuron: simulate the Hodgkin-Huxley model for a single neuron
% I: input current (in uA/cm^2)
% V: initial membrane potential (in mV)
% m, h, n: initial values for gating variables
% tspan: time span for simulation (in ms)
% constants
Cm = 1; % membrane capacitance (in uF/cm^2)
gNa = 120; % maximum sodium conductance (in mS/cm^2)
ENa = 50; % sodium reversal potential (in mV)
gK = 36; % maximum potassium conductance (in mS/cm^2)
EK = -77; % potassium reversal potential (in mV)
gL = .3; % leak conductance (in mS/cm^2)
EL = -54.4; % leak reversal potential (in mV)
% differential equations
dVdt = @(t, V, m, h, n) (I - gNa*m^3*h*(V-ENa) - gK*n^4*(V-EK) - gL*(V-EL)) / Cm;
dmdt = @(t, V, m) alpha_m(V)*(1-m) - beta_m(V)*m;
dhdt = @(t, V, h) alpha_h(V)*(1-h) - beta_h(V)*h;
dndt = @(t, V, n) alpha_n(V)*(1-n) - beta_n(V)*n;
% solve differential equations
[t, Y] = ode45(@(t, Y) [dVdt(t, Y(1), Y(2), Y(3), Y(4)); dmdt(t, Y(1), Y(2)); dhdt(t, Y(1), Y(3)); dndt(t, Y(1), Y(4))], tspan, [V, m, h, n]);
% extract variables
V = Y(:,1);
m = Y(:,2);
h = Y(:,3);
n = Y(:,4);
% helper functions for gating variables
function am = alpha_m(V)
am = (2.5 - .1*(V+65)) ./ (exp(2.5-.1*(V+65)) - 1);
end
function bm = beta_m(V)
bm = 4 * exp(-(V+65)/18);
end
function ah = alpha_h(V)
ah = .07 * exp(-(V+65)/20);
end
function bh = beta_h(V)
bh = 1 ./ (exp(3.-.1*(V+65)) + 1);
end
function an = alpha_n(V)
an = (.1 - .01*(V+65)) ./ (exp(1-.1*(V+65)) - 1);
end
function bn = beta_n(V)
bn = .125 * exp(-(V+65)/80);
end
end
阅读全文