mysql hive 字段类型映射
时间: 2023-07-21 15:55:59 浏览: 140
MySQL 和 Hive 都是关系型数据库,但是它们的字段类型有些差别,下面是它们之间常见的字段类型映射:
| MySQL 字段类型 | Hive 字段类型 |
| --------------- | -------------- |
| INT | INT |
| BIGINT | BIGINT |
| DOUBLE | DOUBLE |
| FLOAT | FLOAT |
| DECIMAL | DECIMAL |
| VARCHAR | STRING |
| TEXT | STRING |
| DATE | DATE |
| DATETIME | TIMESTAMP |
| TIMESTAMP | TIMESTAMP |
需要注意的是,Hive 中没有 CHAR 类型,而是将所有字符串类型都映射成 STRING。同时,Hive 中也没有 ENUM 和 SET 等类型。另外,Hive 中的 BOOLEAN 类型是用 TINYINT 存储的,1 表示 TRUE,0 表示 FALSE。
相关问题
作为一个资深的py算法工程师,你需要对hivesql,clickhouse,mysql,sqlserver进行数据血缘分析解析得到输出表和字段级别映射,输出一套完整的python代码
以下是一个基本的 Python 代码示例,用于对 Hivesql、ClickHouse、MySQL 和 SQL Server 数据库进行数据血缘分析解析,并输出表和字段级别映射:
```
import sqlparse
import re
import pyodbc
import mysql.connector
from clickhouse_driver import Client
# 数据库连接配置
hiveserver2_host = 'localhost'
hiveserver2_port = 10000
clickhouse_host = 'localhost'
clickhouse_port = 9000
mysql_host = 'localhost'
mysql_port = 3306
mysql_user = 'root'
mysql_password = 'password'
mysql_database = 'test'
sqlserver_host = 'localhost'
sqlserver_port = 1433
sqlserver_user = 'sa'
sqlserver_password = 'password'
sqlserver_database = 'test'
# 数据库连接函数
def connect_to_hiveserver2():
conn = pyodbc.connect('DSN=hive;HOST={0};PORT={1}'.format(hiveserver2_host, hiveserver2_port), autocommit=True)
return conn.cursor()
def connect_to_clickhouse():
client = Client(host=clickhouse_host, port=clickhouse_port)
return client
def connect_to_mysql():
conn = mysql.connector.connect(host=mysql_host, port=mysql_port, user=mysql_user, password=mysql_password, database=mysql_database)
return conn.cursor()
def connect_to_sqlserver():
conn = pyodbc.connect('DRIVER={ODBC Driver 17 for SQL Server};SERVER={0},{1};DATABASE={2};UID={3};PWD={4}'.format(sqlserver_host, sqlserver_port, sqlserver_database, sqlserver_user, sqlserver_password))
return conn.cursor()
# 解析 SQL 语句函数
def parse_sql(sql):
parsed = sqlparse.parse(sql)
stmt = parsed[0]
return stmt.tokens
# 提取 SQL 语句中的表和字段函数
def extract_tables_fields(tokens):
tables = set()
fields = set()
for token in tokens:
if isinstance(token, sqlparse.sql.Identifier):
identifier = str(token)
if '.' in identifier:
table, field = identifier.split('.')
tables.add(table)
fields.add(field)
else:
fields.add(identifier)
elif isinstance(token, sqlparse.sql.IdentifierList):
for identifier in token.get_identifiers():
if '.' in str(identifier):
table, field = str(identifier).split('.')
tables.add(table)
fields.add(field)
else:
fields.add(str(identifier))
elif isinstance(token, sqlparse.sql.Where):
where_tokens = token.tokens
for where_token in where_tokens:
if isinstance(where_token, sqlparse.sql.Comparison):
left_token, right_token = where_token.tokens[0], where_token.tokens[2]
if isinstance(left_token, sqlparse.sql.Identifier):
identifier = str(left_token)
if '.' in identifier:
table, field = identifier.split('.')
tables.add(table)
fields.add(field)
else:
fields.add(identifier)
if isinstance(right_token, sqlparse.sql.Identifier):
identifier = str(right_token)
if '.' in identifier:
table, field = identifier.split('.')
tables.add(table)
fields.add(field)
else:
fields.add(identifier)
return tables, fields
# 建立表和字段映射关系函数
def build_mapping(tables, fields):
mapping = {}
for table in tables:
if '.' in table:
database, table_name = table.split('.')
else:
database = None
table_name = table
if database:
columns = get_columns_from_database(database, table_name)
else:
columns = get_columns_from_table(table_name)
for column in columns:
if column in fields:
mapping[table + '.' + column] = column
return mapping
# 从数据库获取表字段函数
def get_columns_from_database(database, table_name):
conn = pyodbc.connect('DRIVER={{ODBC Driver 17 for SQL Server}};SERVER={0},{1};DATABASE={2};UID={3};PWD={4}'.format(sqlserver_host, sqlserver_port, database, sqlserver_user, sqlserver_password))
cursor = conn.cursor()
cursor.execute('SELECT COLUMN_NAME FROM INFORMATION_SCHEMA.COLUMNS WHERE TABLE_NAME = N\'' + table_name + '\'')
columns = [column[0] for column in cursor.fetchall()]
return columns
# 从表获取表字段函数
def get_columns_from_table(table_name):
cursor = connect_to_mysql()
cursor.execute('SHOW COLUMNS FROM ' + table_name)
columns = [column[0] for column in cursor.fetchall()]
return columns
# 主函数
def main():
# Hivesql 数据库
hivesql = 'SELECT a.id, a.name, b.age FROM table1 a JOIN table2 b ON a.id = b.id WHERE a.id = 1'
hivesql_tokens = parse_sql(hivesql)
hivesql_tables, hivesql_fields = extract_tables_fields(hivesql_tokens)
hivesql_mapping = build_mapping(hivesql_tables, hivesql_fields)
print('Hivesql 数据血缘分析解析:')
print('表和字段映射关系:', hivesql_mapping)
# ClickHouse 数据库
clickhouse = 'SELECT id, name, age FROM table WHERE id = 1'
clickhouse_tokens = parse_sql(clickhouse)
clickhouse_tables, clickhouse_fields = extract_tables_fields(clickhouse_tokens)
clickhouse_mapping = build_mapping(clickhouse_tables, clickhouse_fields)
print('ClickHouse 数据血缘分析解析:')
print('表和字段映射关系:', clickhouse_mapping)
# MySQL 数据库
mysql = 'SELECT id, name, age FROM table WHERE id = 1'
mysql_tokens = parse_sql(mysql)
mysql_tables, mysql_fields = extract_tables_fields(mysql_tokens)
mysql_mapping = build_mapping(mysql_tables, mysql_fields)
print('MySQL 数据血缘分析解析:')
print('表和字段映射关系:', mysql_mapping)
# SQL Server 数据库
sqlserver = 'SELECT id, name, age FROM table WHERE id = 1'
sqlserver_tokens = parse_sql(sqlserver)
sqlserver_tables, sqlserver_fields = extract_tables_fields(sqlserver_tokens)
sqlserver_mapping = build_mapping(sqlserver_tables, sqlserver_fields)
print('SQL Server 数据血缘分析解析:')
print('表和字段映射关系:', sqlserver_mapping)
if __name__ == '__main__':
main()
```
以上代码示例仅为基本示例,实际应用中还需要考虑更多的情况,例如 SQL 方言的差异、数据库连接的异常处理、SQL 语句的优化等等。
mysql的数据类型varchar对应hive的什么数据类型
在MySQL中,VARCHAR是一种用于存储可变长度字符串的数据类型。而在Hive中,VARCHAR的数据类型通常使用`STRING`来表示。
Hive中的STRING数据类型与MySQL中的VARCHAR非常相似,它用于存储可变长度的字符串。与MySQL中的VARCHAR不同的是,Hive中的STRING数据类型支持使用大小写敏感的字符串比较操作。
此外,Hive还提供了一些其他的数据类型,如CHAR、TEXT、VARCHAR等,这些数据类型与MySQL中的数据类型在某些方面有所不同。具体选择哪种数据类型取决于你的需求和数据的特点。
需要注意的是,虽然MySQL和Hive在某些方面具有相似性,但它们之间仍然存在一些差异,因此在将MySQL数据迁移到Hive时,需要仔细考虑数据类型和字段的映射关系,以确保数据的正确转换和一致性。
阅读全文