用2023a版matlab写一段将四副256*256的灰度图像I1、I2、I3、I4进行图像归一化处理,图像归一化的原理是:首先计算并确定原始图像对各种仿射变换具有较强不变性的图像矩,然后根据得到的图像矩确定变换函数的具体参数,最后利用变换函数将原始图像转换为具有标准形式的图像,其归一化过程主要包括4个步骤:平移归一化、X-shear归一化、Y-shear归一化和缩放归一化
时间: 2023-10-25 20:14:34 浏览: 109
首先,需要定义一个函数来计算图像矩。代码如下:
```
function [M, N] = image_moments(I)
% 计算图像矩
[rows, cols] = size(I);
x = repmat(1:cols, rows, 1);
y = repmat((1:rows)', 1, cols);
M = sum(sum(double(I).*x));
N = sum(sum(double(I).*y));
end
```
接下来,定义一个函数来进行图像归一化处理。代码如下:
```
function [J1, J2, J3, J4] = normalize_images(I1, I2, I3, I4)
% 图像归一化处理
% 平移归一化
[M1, N1] = image_moments(I1);
[M2, N2] = image_moments(I2);
[M3, N3] = image_moments(I3);
[M4, N4] = image_moments(I4);
T1 = [1 0 -M1; 0 1 -N1; 0 0 1];
T2 = [1 0 -M2; 0 1 -N2; 0 0 1];
T3 = [1 0 -M3; 0 1 -N3; 0 0 1];
T4 = [1 0 -M4; 0 1 -N4; 0 0 1];
I1 = imwarp(I1, affine2d(T1));
I2 = imwarp(I2, affine2d(T2));
I3 = imwarp(I3, affine2d(T3));
I4 = imwarp(I4, affine2d(T4));
% X-shear归一化
[M1, N1] = image_moments(I1);
[M2, N2] = image_moments(I2);
[M3, N3] = image_moments(I3);
[M4, N4] = image_moments(I4);
a1 = 0;
a2 = 0;
a3 = -(N3-N1)/(M3-M1);
a4 = -(N4-N2)/(M4-M2);
T1 = [1 a1 0; 0 1 0; 0 0 1];
T2 = [1 a2 0; 0 1 0; 0 0 1];
T3 = [1 a3 0; 0 1 0; 0 0 1];
T4 = [1 a4 0; 0 1 0; 0 0 1];
I1 = imwarp(I1, affine2d(T1));
I2 = imwarp(I2, affine2d(T2));
I3 = imwarp(I3, affine2d(T3));
I4 = imwarp(I4, affine2d(T4));
% Y-shear归一化
[M1, N1] = image_moments(I1);
[M2, N2] = image_moments(I2);
[M3, N3] = image_moments(I3);
[M4, N4] = image_moments(I4);
b1 = 0;
b2 = -(M2-M1)/(N2-N1);
b3 = 0;
b4 = -(M4-M3)/(N4-N3);
T1 = [1 0 0; b1 1 0; 0 0 1];
T2 = [1 0 0; b2 1 0; 0 0 1];
T3 = [1 0 0; b3 1 0; 0 0 1];
T4 = [1 0 0; b4 1 0; 0 0 1];
I1 = imwarp(I1, affine2d(T1));
I2 = imwarp(I2, affine2d(T2));
I3 = imwarp(I3, affine2d(T3));
I4 = imwarp(I4, affine2d(T4));
% 缩放归一化
[M1, N1] = image_moments(I1);
[M2, N2] = image_moments(I2);
[M3, N3] = image_moments(I3);
[M4, N4] = image_moments(I4);
s1 = sqrt((M1^2+N1^2)/2);
s2 = sqrt((M2^2+N2^2)/2);
s3 = sqrt((M3^2+N3^2)/2);
s4 = sqrt((M4^2+N4^2)/2);
T1 = [1 0 0; 0 1 0; -M1 -N1 1]/s1;
T2 = [1 0 0; 0 1 0; -M2 -N2 1]/s2;
T3 = [1 0 0; 0 1 0; -M3 -N3 1]/s3;
T4 = [1 0 0; 0 1 0; -M4 -N4 1]/s4;
J1 = imwarp(I1, affine2d(T1));
J2 = imwarp(I2, affine2d(T2));
J3 = imwarp(I3, affine2d(T3));
J4 = imwarp(I4, affine2d(T4));
end
```
最后,我们可以调用该函数来进行图像归一化处理:
```
I1 = imread('image1.jpg');
I2 = imread('image2.jpg');
I3 = imread('image3.jpg');
I4 = imread('image4.jpg');
[J1, J2, J3, J4] = normalize_images(I1, I2, I3, I4);
```
阅读全文